File size: 5,903 Bytes
5df619b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 |
import gzip
import json
from collections import Counter
import pandas as pd
import numpy as np
import jax.numpy as jnp
import tqdm
from sentence_transformers import util
from typing import List, Union
import torch
from backend.utils import load_model, filter_questions, load_embeddings
from sklearn.manifold import TSNE
def cos_sim(a, b):
return jnp.matmul(a, jnp.transpose(b)) / (jnp.linalg.norm(a) * jnp.linalg.norm(b))
# We get similarity between embeddings.
def text_similarity(anchor: str, inputs: List[str], model_name: str, model_dict: dict):
print(model_name)
model = load_model(model_name, model_dict)
# Creating embeddings
if hasattr(model, 'encode'):
anchor_emb = model.encode(anchor)[None, :]
inputs_emb = model.encode(inputs)
else:
assert len(model) == 2
anchor_emb = model[0].encode(anchor)[None, :]
inputs_emb = model[1].encode(inputs)
# Obtaining similarity
similarity = list(jnp.squeeze(cos_sim(anchor_emb, inputs_emb)))
# Returning a Pandas' dataframe
d = {'inputs': inputs,
'score': [round(similarity[i], 3) for i in range(len(similarity))]}
df = pd.DataFrame(d, columns=['inputs', 'score'])
return df
# Search
def text_search(anchor: str, n_answers: int, model_name: str, model_dict: dict):
# Proceeding with model
print(model_name)
assert model_name == "distilbert_qa"
model = load_model(model_name, model_dict)
# Creating embeddings
query_emb = model.encode(anchor, convert_to_tensor=True)[None, :]
print("loading embeddings")
corpus_emb = load_embeddings()
# Getting hits
hits = util.semantic_search(query_emb, corpus_emb, score_function=util.dot_score, top_k=n_answers)[0]
filtered_posts = filter_questions("python")
print(f"{len(filtered_posts)} posts found with tag: python")
hits_titles = []
hits_scores = []
urls = []
for hit in hits:
post = filtered_posts[hit['corpus_id']]
hits_titles.append(post['title'])
hits_scores.append("{:.3f}".format(hit['score']))
urls.append(f"https://stackoverflow.com/q/{post['id']}")
return hits_titles, hits_scores, urls
def text_cluster(anchor: str, n_answers: int, model_name: str, model_dict: dict):
# Proceeding with model
print(model_name)
assert model_name == "distilbert_qa"
model = load_model(model_name, model_dict)
# Creating embeddings
query_emb = model.encode(anchor, convert_to_tensor=True)[None, :]
print("loading embeddings")
corpus_emb = load_embeddings()
# Getting hits
hits = util.semantic_search(query_emb, corpus_emb, score_function=util.dot_score, top_k=n_answers)[0]
filtered_posts = filter_questions("python")
hits_dict = [filtered_posts[hit['corpus_id']] for hit in hits]
hits_dict.append(dict(id = '1', title = anchor, tags = ['']))
hits_emb = torch.stack([corpus_emb[hit['corpus_id']] for hit in hits])
hits_emb = torch.cat((hits_emb, query_emb))
# Dimensionality reduction with t-SNE
tsne = TSNE(n_components=3, verbose=1, perplexity=15, n_iter=1000)
tsne_results = tsne.fit_transform(hits_emb.cpu())
df = pd.DataFrame(hits_dict)
tags = list(df['tags'])
counter = Counter(tags[0])
for i in tags[1:]:
counter.update(i)
df_tags = pd.DataFrame(counter.most_common(), columns=['Tag', 'Mentions'])
most_common_tags = list(df_tags['Tag'])[1:5]
labels = []
for tags_list in list(df['tags']):
for common_tag in most_common_tags:
if common_tag in tags_list:
labels.append(common_tag)
break
elif common_tag != most_common_tags[-1]:
continue
else:
labels.append('others')
df['title'] = [post['title'] for post in hits_dict]
df['labels'] = labels
df['tsne_x'] = tsne_results[:, 0]
df['tsne_y'] = tsne_results[:, 1]
df['tsne_z'] = tsne_results[:, 2]
df['size'] = [2 for i in range(len(df))]
# Making the query bigger than the rest of the observations
df['size'][len(df) - 1] = 10
df['labels'][len(df) - 1] = 'QUERY'
import plotly.express as px
fig = px.scatter_3d(df, x='tsne_x', y='tsne_y', z='tsne_z', color='labels', size='size',
color_discrete_sequence=px.colors.qualitative.D3, hover_data=[df.title])
return fig
# We get similarity between embeddings.
def tweets_vaccine(anchor: str, model_name: str, model_dict: dict):
print(model_name)
model = load_model(model_name, model_dict)
# Keywords common in disinformation tweets
keywords = '''abolish big pharma,
no forced flu shots,
antivaccine,
No Forced Vaccines,
Arrest Bill Gates,
not mandatory vaccines,
No Vaccine,
big pharma mafia,
No Vaccine For Me,
big pharma kills,
no vaccine mandates,
parents over pharma,
say no to vaccines,
stop mandatory vaccination,
vaccines are poison,
learn the risk,
vaccines cause,
medical freedom,
vaccines kill,
medical freedom of choice,
vaxxed,
my body my choice,
vaccines have very dangerous consequences,
Vaccines harm your organism'''
# Creating embeddings
if hasattr(model, 'encode'):
anchor_emb = model.encode(anchor)[None, :]
inputs_emb = model.encode(keywords)
else:
assert len(model) == 2
anchor_emb = model[0].encode(anchor)[None, :]
inputs_emb = model[1].encode(keywords)
# Obtaining similarity
similarity = jnp.squeeze(jnp.matmul(anchor_emb, jnp.transpose(inputs_emb)) / (jnp.linalg.norm(anchor_emb) * jnp.linalg.norm(inputs_emb))).tolist()
# Returning a Pandas' dataframe
d = dict(tweet = anchor,
score = [round(similarity, 3)])
df = pd.DataFrame(d, columns=['tweet', 'score'])
return df
|