Spaces:
Running
Running
File size: 4,909 Bytes
2bd606a 97354e0 2bd606a f1b4ae2 2bd606a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 |
"""
TODO:
- 统计 tokenizer_impl
- 统计 OOV
- 统计 reversal
- 增加 math,code
"""
import gradio as gr
from compression_util import get_compression_leaderboard, common_corpuses
with gr.Blocks() as demo:
# gr.Markdown("## Convertor")
# with gr.Accordion("Convertor", open=False):
# gr.Markdown("Tokenize {} corpus")
# with gr.Row(elem_classes="no-border"):
# gr.Button("File Size", min_width=50)
# file_size = gr.Textbox(
# show_label=False,
# min_width=50,
# # elem_classes="textbox-as-text"
# )
# gr.Dropdown(
# choices=['MB', 'GB', 'TB'],
# show_label=False,
# min_width=15,
# # elem_classes="textbox-as-text"
# )
# # gr.Markdown('<h2 align="center">≈</h2>')
# # gr.HTML('<h2 style="margin: auto;">≈</h2>')
# gr.Button(
# "≈",
# min_width=10,
# elem_classes="button-white h2-font"
#
# )
#
# gr.Button(
# "Tokens",
# min_width=50
# )
# gr.Textbox(
# show_label=False,
# min_width=50
# )
# gr.Dropdown(
# ['million', 'billion', 'trillion'],
# show_label=False,
# min_width=15,
# elem_classes="button-white"
# )
gr.Markdown("## 🛠️ Setting") # ⚙
with gr.Accordion("Please select the corpus and measure of compression rate.", open=True):
# file size 💽 🖴, tokens 🧮
# Total amount of disk used
with gr.Row():
with gr.Column():
compress_rate_corpus = gr.Dropdown(
common_corpuses, # , "code"
value=["cc100/en", "cc100/zh-Hans", "cc100/fr", "cc100/es"],
label="corpus",
multiselect=True
# info=""
)
# unit of file_size: gigabyte terabyte
# unit of token_num: million billion trillion
# The most common units of measurement include length (meter, inch, foot), weight (gram, kilogram, pound), volume (liter, gallon, milliliter), time (second, minute, hour)
compress_rate_unit = gr.Radio(
["b_tokens/g_bytes", "t_tokens/t_bytes"],
value="b_tokens/g_bytes",
label="measure", # evaluation metric
)
gr.Markdown(
# "Note:\n\n"
"- `corpus`: tokenization is performed on the selected subsets of [cc100](https://huggingface.co/datasets/cc100) corpus.\n"
"- `b_tokens/g_bytes` measures how many billion tokens per gigabytes corpus.\n"
"- `t_tokens/t_bytes` measures how many trillion tokens per terabytes corpus.\n"
# "- `g_bytes/b_tokens` measures how many gigabytes corpus per billion tokens.\n"
# "- `t_bytes/t_tokens` measures how many terabytes corpus per trillion tokens.\n"
"- `char/token` measures how many chars per token on the tokenized corpus.\n"
"- `oov_ratio`: out-of-vocabulary ratio on the selected corpus, 👉 get [oov charset](https://huggingface.co/spaces/eson/tokenizer-arena/raw/main/stats/compression_rate.json)\n\n"
"You can reproduce this procedure with [compression_util.py](https://huggingface.co/spaces/eson/tokenizer-arena/blob/main/compression_util.py)."
)
gr.Markdown("## 🏆 Compression Rate Leaderboard")
search_bar = gr.Textbox(
placeholder="🔍 Search by tokenizer or organization (e.g., 'llama', 'openai') and press ENTER...",
show_label=False,
elem_id="search-bar",
)
compress_rate_table = gr.Dataframe(datatype="html")
# func call
compress_rate_corpus.change(
get_compression_leaderboard,
inputs=[compress_rate_corpus, compress_rate_unit, search_bar],
outputs=compress_rate_table
)
compress_rate_unit.change(
get_compression_leaderboard,
inputs=[compress_rate_corpus, compress_rate_unit, search_bar],
outputs=compress_rate_table
)
# file_size.change(
# get_all_compress_rate,
# outputs=compress_rate_table
# )
search_bar.submit(
get_compression_leaderboard,
inputs=[
compress_rate_corpus,
compress_rate_unit,
search_bar,
],
outputs=compress_rate_table
)
demo.load(
get_compression_leaderboard,
inputs=[compress_rate_corpus, compress_rate_unit],
outputs=compress_rate_table
)
if __name__ == "__main__":
demo.launch()
|