File size: 15,680 Bytes
dc9d3f8 dc6fc9a dc9d3f8 dc6fc9a dc9d3f8 dc6fc9a dc9d3f8 dc6fc9a dc9d3f8 dc6fc9a dc9d3f8 dc6fc9a dc9d3f8 dc6fc9a dc9d3f8 dc6fc9a dc9d3f8 dc6fc9a dc9d3f8 dc6fc9a dc9d3f8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 |
# %load miniproject1_part4-2-1.py
import streamlit as st
import numpy as np
import numpy.linalg as la
import pickle
import os
import gdown
from sentence_transformers import SentenceTransformer
import matplotlib.pyplot as plt
import math
# Compute Cosine Similarity
def cosine_similarity(x, y):
"""
Exponentiated cosine similarity
1. Compute cosine similarity
2. Exponentiate cosine similarity
3. Return exponentiated cosine similarity
(20 pts)
"""
# Compute cosine similarity
dot_product = np.dot(x, y)
norm_x = np.linalg.norm(x)
norm_y = np.linalg.norm(y)
cosine_sim = dot_product / (norm_x * norm_y)
# Exponentiate cosine similarity
exp_cosine_sim = np.exp(cosine_sim)
# Return exponentiated cosine similarity
return exp_cosine_sim
# Function to Load Glove Embeddings
def load_glove_embeddings(glove_path="Data/embeddings.pkl"):
with open(glove_path, "rb") as f:
embeddings_dict = pickle.load(f, encoding="latin1")
return embeddings_dict
def get_model_id_gdrive(model_type):
if model_type == "25d":
word_index_id = "13qMXs3-oB9C6kfSRMwbAtzda9xuAUtt8"
embeddings_id = "1-RXcfBvWyE-Av3ZHLcyJVsps0RYRRr_2"
elif model_type == "50d":
embeddings_id = "1DBaVpJsitQ1qxtUvV1Kz7ThDc3az16kZ"
word_index_id = "1rB4ksHyHZ9skes-fJHMa2Z8J1Qa7awQ9"
elif model_type == "100d":
word_index_id = "1-oWV0LqG3fmrozRZ7WB1jzeTJHRUI3mq"
embeddings_id = "1SRHfX130_6Znz7zbdfqboKosz-PfNvNp"
return word_index_id, embeddings_id
def download_glove_embeddings_gdrive(model_type):
# Get glove embeddings from google drive
word_index_id, embeddings_id = get_model_id_gdrive(model_type)
# Use gdown to get files from google drive
# 修改的
embeddings_temp = "embeddings_50d_temp.npy"
# embeddings_temp = "embeddings_" + str(model_type) + "_temp.npy"
# 修改的
word_index_temp = "word_index_dict_50d_temp.pkl"
# word_index_temp = "word_index_dict_" + str(model_type) + "_temp.pkl"
# Download word_index pickle file
print("Downloading word index dictionary....\n")
# gdown.download(id=word_index_id, output=word_index_temp, quiet=False)
# Download embeddings numpy file
print("Donwloading embedings...\n\n")
# gdown.download(id=embeddings_id, output=embeddings_temp, quiet=False)
# @st.cache_data()
def load_glove_embeddings_gdrive(model_type):
word_index_temp = "word_index_dict_" + str(model_type) + "_temp.pkl"
embeddings_temp = "embeddings_" + str(model_type) + "_temp.npy"
# Load word index dictionary
word_index_dict = pickle.load(open(word_index_temp, "rb"), encoding="latin")
# Load embeddings numpy
embeddings = np.load(embeddings_temp)
return word_index_dict, embeddings
@st.cache_resource()
def load_sentence_transformer_model(model_name):
sentenceTransformer = SentenceTransformer(model_name)
return sentenceTransformer
def get_sentence_transformer_embeddings(sentence, model_name="all-MiniLM-L6-v2"):
"""
Get sentence transformer embeddings for a sentence
"""
# 384 dimensional embedding
# Default model: https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2
sentenceTransformer = load_sentence_transformer_model(model_name)
try:
return sentenceTransformer.encode(sentence)
except:
if model_name == "all-MiniLM-L6-v2":
return np.zeros(384)
else:
return np.zeros(512)
def get_glove_embeddings(word, word_index_dict, embeddings, model_type):
"""
Get glove embedding for a single word
"""
if word.lower() in word_index_dict:
return embeddings[word_index_dict[word.lower()]]
else:
return np.zeros(int(model_type.split("d")[0]))
def averaged_glove_embeddings_gdrive(sentence, word_index_dict, embeddings, model_type=50):
"""
Get averaged glove embeddings for a sentence
1. Split sentence into words
2. Get embeddings for each word
3. Add embeddings for each word
4. Divide by number of words
5. Return averaged embeddings
(30 pts)
"""
words = sentence.split() # Step 1: Split sentence into words
embedding_sum = np.zeros(int(model_type.split("d")[0]))
valid_word_count = 0
for word in words: # Step 2: Get embeddings for each word
word_embedding = get_glove_embeddings(word, word_index_dict, embeddings, model_type)
if np.any(word_embedding): # Only consider valid embeddings
embedding_sum += word_embedding
valid_word_count += 1
if valid_word_count > 0: # Step 4: Divide by number of words
averaged_embedding = embedding_sum / valid_word_count
else:
averaged_embedding = np.zeros(int(model_type.split("d")[0]))
return averaged_embedding # Step 5: Return averaged embeddings
def get_category_embeddings(embeddings_metadata):
"""
Get embeddings for each category
1. Split categories into words
2. Get embeddings for each word
"""
model_name = embeddings_metadata["model_name"]
st.session_state["cat_embed_" + model_name] = {}
for category in st.session_state.categories.split(" "):
if model_name:
if not category in st.session_state["cat_embed_" + model_name]:
st.session_state["cat_embed_" + model_name][category] = get_sentence_transformer_embeddings(category, model_name=model_name)
else:
if not category in st.session_state["cat_embed_" + model_name]:
st.session_state["cat_embed_" + model_name][category] = get_sentence_transformer_embeddings(category)
def update_category_embeddings(embedings_metadata):
"""
Update embeddings for each category
"""
get_category_embeddings(embeddings_metadata)
def get_sorted_cosine_similarity(embeddings_metadata):
"""
Get sorted cosine similarity between input sentence and categories
Steps:
1. Get embeddings for input sentence
2. Get embeddings for categories (if not found, update category embeddings)
3. Compute cosine similarity between input sentence and categories
4. Sort cosine similarity
5. Return sorted cosine similarity
(50 pts)
"""
categories = st.session_state.categories.split(" ")
cosine_sim = {}
if embeddings_metadata["embedding_model"] == "glove":
word_index_dict = embeddings_metadata["word_index_dict"]
embeddings = embeddings_metadata["embeddings"]
model_type = embeddings_metadata["model_type"]
input_embedding = averaged_glove_embeddings_gdrive(st.session_state.text_search,
word_index_dict,
embeddings, model_type)
for category in categories:
# Get embedding for category
category_embedding = averaged_glove_embeddings_gdrive(category, word_index_dict, embeddings, model_type)
# Compute cosine similarity
cos_sim = cosine_similarity(input_embedding, category_embedding)
cosine_sim[category] = cos_sim
else:
model_name = embeddings_metadata["model_name"]
if not "cat_embed_" + model_name in st.session_state:
get_category_embeddings(embeddings_metadata)
category_embeddings = st.session_state["cat_embed_" + model_name]
print("text_search = ", st.session_state.text_search)
if model_name:
input_embedding = get_sentence_transformer_embeddings(st.session_state.text_search, model_name=model_name)
else:
input_embedding = get_sentence_transformer_embeddings(st.session_state.text_search)
for category in categories:
# Update category embeddings if category not found
if category not in category_embeddings:
update_category_embeddings(embeddings_metadata)
category_embeddings = st.session_state["cat_embed_" + model_name]
# Compute cosine similarity
category_embedding = category_embeddings[category]
cos_sim = cosine_similarity(input_embedding, category_embedding)
cosine_sim[category] = cos_sim
# Sort the cosine similarities
sorted_cosine_sim = dict(sorted(cosine_sim.items(), key=lambda item: item[1], reverse=True))
return sorted_cosine_sim
#
# def plot_piechart(sorted_cosine_scores_items):
# sorted_cosine_scores = np.array([
# sorted_cosine_scores_items[index][1]
# for index in range(len(sorted_cosine_scores_items))
# ]
# )
# categories = st.session_state.categories.split(" ")
# categories_sorted = [
# categories[sorted_cosine_scores_items[index][0]]
# for index in range(len(sorted_cosine_scores_items))
# ]
# fig, ax = plt.subplots()
# ax.pie(sorted_cosine_scores, labels=categories_sorted, autopct="%1.1f%%")
# st.pyplot(fig) # Figure
def plot_piechart_helper(sorted_cosine_scores_items):
sorted_cosine_scores = np.array(list(sorted_cosine_scores_items.values()))
categories_sorted = list(sorted_cosine_scores_items.keys())
fig, ax = plt.subplots(figsize=(3, 3))
my_explode = np.zeros(len(categories_sorted))
my_explode[0] = 0.2
if len(categories_sorted) == 3:
my_explode[1] = 0.1
elif len(categories_sorted) > 3:
my_explode[2] = 0.05
ax.pie(
sorted_cosine_scores,
labels=categories_sorted,
autopct="%1.1f%%",
explode=my_explode,
)
return fig
def plot_piecharts(sorted_cosine_scores_models):
scores_list = []
categories = st.session_state.categories.split(" ")
index = 0
for model in sorted_cosine_scores_models:
scores_list.append(sorted_cosine_scores_models[model])
# scores_list[index] = np.array([scores_list[index][ind2][1] for ind2 in range(len(scores_list[index]))])
index += 1
if len(sorted_cosine_scores_models) == 2:
fig, (ax1, ax2) = plt.subplots(2)
categories_sorted = [
categories[scores_list[0][index][0]] for index in range(len(scores_list[0]))
]
sorted_scores = np.array(
[scores_list[0][index][1] for index in range(len(scores_list[0]))]
)
ax1.pie(sorted_scores, labels=categories_sorted, autopct="%1.1f%%")
categories_sorted = [
categories[scores_list[1][index][0]] for index in range(len(scores_list[1]))
]
sorted_scores = np.array(
[scores_list[1][index][1] for index in range(len(scores_list[1]))]
)
ax2.pie(sorted_scores, labels=categories_sorted, autopct="%1.1f%%")
st.pyplot(fig)
def plot_alatirchart(sorted_cosine_scores_models):
models = list(sorted_cosine_scores_models.keys())
tabs = st.tabs(models)
figs = {}
for model in models:
# modified
figs[model] = plot_piechart_helper(sorted_cosine_scores_models[model])
for index in range(len(tabs)):
with tabs[index]:
st.pyplot(figs[models[index]])
### Text Search ###
st.sidebar.title("GloVe Twitter")
st.sidebar.markdown(
"""
GloVe is an unsupervised learning algorithm for obtaining vector representations for words. Pretrained on
2 billion tweets with vocabulary size of 1.2 million. Download from [Stanford NLP](http://nlp.stanford.edu/data/glove.twitter.27B.zip).
Jeffrey Pennington, Richard Socher, and Christopher D. Manning. 2014. *GloVe: Global Vectors for Word Representation*.
"""
)
if 'categories' not in st.session_state:
st.session_state['categories'] = "Flowers Colors Cars Weather Food"
if 'text_search' not in st.session_state:
st.session_state['text_search'] = "Roses are red, trucks are blue, and Seattle is grey right now"
model_type = st.sidebar.selectbox("Choose the model", ("25d", "50d"), index=1)
st.title("Search Based Retrieval Demo")
st.subheader(
"Pass in space separated categories you want this search demo to be about."
)
# st.selectbox(label="Pick the categories you want this search demo to be about...",
# options=("Flowers Colors Cars Weather Food", "Chocolate Milk", "Anger Joy Sad Frustration Worry Happiness", "Positive Negative"),
# key="categories"
# )
# categories of user input
user_categories = st.text_input(
label="Categories", value=st.session_state.categories
)
st.session_state.categories = user_categories
# st.text_input(
# label="Categories", key="categories", value="Flowers Colors Cars Weather Food"
# )
# Categories = st.session_state.get('categories', "Flowers Colors Cars Weather Food")
print(st.session_state.get("categories"))
# print(st.session_state["categories"])
print(type(st.session_state.get("categories")))
# print(type(st.session_state["categories"]))
# print("Categories = ", categories)
# st.session_state.categories = categories
st.subheader("Pass in an input word or even a sentence")
user_text_search = st.text_input(
label="Input your sentence",
value=st.session_state.text_search,
)
st.session_state.text_search = user_text_search
# st.session_state.text_search = text_search
# Download glove embeddings if it doesn't exist
embeddings_path = "embeddings_" + str(model_type) + "_temp.npy"
word_index_dict_path = "word_index_dict_" + str(model_type) + "_temp.pkl"
if not os.path.isfile(embeddings_path) or not os.path.isfile(word_index_dict_path):
print("Model type = ", model_type)
glove_path = "Data/glove_" + str(model_type) + ".pkl"
print("glove_path = ", glove_path)
# Download embeddings from google drive
with st.spinner("Downloading glove embeddings..."):
download_glove_embeddings_gdrive(model_type)
# Load glove embeddings
word_index_dict, embeddings = load_glove_embeddings_gdrive(model_type)
# Find closest word to an input word
if st.session_state.text_search:
# Glove embeddings
print("Glove Embedding")
embeddings_metadata = {
"embedding_model": "glove",
"word_index_dict": word_index_dict,
"embeddings": embeddings,
"model_type": model_type,
"text_search": st.session_state.text_search
}
with st.spinner("Obtaining Cosine similarity for Glove..."):
sorted_cosine_sim_glove = get_sorted_cosine_similarity(
embeddings_metadata
)
# Sentence transformer embeddings
print("Sentence Transformer Embedding")
embeddings_metadata = {"embedding_model": "transformers", "model_name": "",
"text_search": st.session_state.text_search }
with st.spinner("Obtaining Cosine similarity for 384d sentence transformer..."):
sorted_cosine_sim_transformer = get_sorted_cosine_similarity(
embeddings_metadata
)
# Results and Plot Pie Chart for Glove
print("Categories are: ", st.session_state.categories)
st.subheader(
"Closest word I have between: "
+ st.session_state.categories
+ " as per different Embeddings"
)
print(sorted_cosine_sim_glove)
print(sorted_cosine_sim_transformer)
st.write(f"Closest category using GloVe embeddings : {list(sorted_cosine_sim_glove.keys())[0]}")
st.write(
f"Closest category using Sentence Transformer embeddings : {list(sorted_cosine_sim_transformer.keys())[0]}")
plot_alatirchart(
{
"glove_" + str(model_type): sorted_cosine_sim_glove,
"sentence_transformer_384": sorted_cosine_sim_transformer,
}
)
st.write("")
st.write(
"Demo developed by [V50](https://huggingface.co/spaces/ericlkc/V50)"
)
|