File size: 15,680 Bytes
dc9d3f8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dc6fc9a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dc9d3f8
 
 
dc6fc9a
 
 
dc9d3f8
 
 
 
dc6fc9a
dc9d3f8
 
dc6fc9a
dc9d3f8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dc6fc9a
 
dc9d3f8
 
 
 
dc6fc9a
dc9d3f8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dc6fc9a
dc9d3f8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dc6fc9a
 
 
 
dc9d3f8
dc6fc9a
 
 
 
 
 
 
 
dc9d3f8
 
 
dc6fc9a
dc9d3f8
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455


# %load miniproject1_part4-2-1.py
import streamlit as st
import numpy as np
import numpy.linalg as la
import pickle
import os
import gdown
from sentence_transformers import SentenceTransformer
import matplotlib.pyplot as plt
import math


# Compute Cosine Similarity
def cosine_similarity(x, y):
    """
    Exponentiated cosine similarity
    1. Compute cosine similarity
    2. Exponentiate cosine similarity
    3. Return exponentiated cosine similarity
    (20 pts)
    """
    # Compute cosine similarity
    dot_product = np.dot(x, y)
    norm_x = np.linalg.norm(x)
    norm_y = np.linalg.norm(y)
    cosine_sim = dot_product / (norm_x * norm_y)

    # Exponentiate cosine similarity
    exp_cosine_sim = np.exp(cosine_sim)

    # Return exponentiated cosine similarity
    return exp_cosine_sim


# Function to Load Glove Embeddings
def load_glove_embeddings(glove_path="Data/embeddings.pkl"):
    with open(glove_path, "rb") as f:
        embeddings_dict = pickle.load(f, encoding="latin1")

    return embeddings_dict


def get_model_id_gdrive(model_type):
    if model_type == "25d":
        word_index_id = "13qMXs3-oB9C6kfSRMwbAtzda9xuAUtt8"
        embeddings_id = "1-RXcfBvWyE-Av3ZHLcyJVsps0RYRRr_2"
    elif model_type == "50d":
        embeddings_id = "1DBaVpJsitQ1qxtUvV1Kz7ThDc3az16kZ"
        word_index_id = "1rB4ksHyHZ9skes-fJHMa2Z8J1Qa7awQ9"
    elif model_type == "100d":
        word_index_id = "1-oWV0LqG3fmrozRZ7WB1jzeTJHRUI3mq"
        embeddings_id = "1SRHfX130_6Znz7zbdfqboKosz-PfNvNp"

    return word_index_id, embeddings_id


def download_glove_embeddings_gdrive(model_type):
    # Get glove embeddings from google drive
    word_index_id, embeddings_id = get_model_id_gdrive(model_type)

    # Use gdown to get files from google drive

    # 修改的
    embeddings_temp = "embeddings_50d_temp.npy"
    # embeddings_temp = "embeddings_" + str(model_type) + "_temp.npy"

    # 修改的
    word_index_temp = "word_index_dict_50d_temp.pkl"
    # word_index_temp = "word_index_dict_" + str(model_type) + "_temp.pkl"

    # Download word_index pickle file
    print("Downloading word index dictionary....\n")
    # gdown.download(id=word_index_id, output=word_index_temp, quiet=False)

    # Download embeddings numpy file
    print("Donwloading embedings...\n\n")
    # gdown.download(id=embeddings_id, output=embeddings_temp, quiet=False)


# @st.cache_data()
def load_glove_embeddings_gdrive(model_type):
    word_index_temp = "word_index_dict_" + str(model_type) + "_temp.pkl"
    embeddings_temp = "embeddings_" + str(model_type) + "_temp.npy"

    # Load word index dictionary
    word_index_dict = pickle.load(open(word_index_temp, "rb"), encoding="latin")

    # Load embeddings numpy
    embeddings = np.load(embeddings_temp)

    return word_index_dict, embeddings


@st.cache_resource()
def load_sentence_transformer_model(model_name):
    sentenceTransformer = SentenceTransformer(model_name)
    return sentenceTransformer


def get_sentence_transformer_embeddings(sentence, model_name="all-MiniLM-L6-v2"):
    """
    Get sentence transformer embeddings for a sentence
    """
    # 384 dimensional embedding
    # Default model: https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2

    sentenceTransformer = load_sentence_transformer_model(model_name)

    try:
        return sentenceTransformer.encode(sentence)
    except:
        if model_name == "all-MiniLM-L6-v2":
            return np.zeros(384)
        else:
            return np.zeros(512)


def get_glove_embeddings(word, word_index_dict, embeddings, model_type):
    """
    Get glove embedding for a single word
    """
    if word.lower() in word_index_dict:
        return embeddings[word_index_dict[word.lower()]]
    else:
        return np.zeros(int(model_type.split("d")[0]))


def averaged_glove_embeddings_gdrive(sentence, word_index_dict, embeddings, model_type=50):
    """
    Get averaged glove embeddings for a sentence
    1. Split sentence into words
    2. Get embeddings for each word
    3. Add embeddings for each word
    4. Divide by number of words
    5. Return averaged embeddings
    (30 pts)
    """
    words = sentence.split()  # Step 1: Split sentence into words
    embedding_sum = np.zeros(int(model_type.split("d")[0]))
    valid_word_count = 0

    for word in words:  # Step 2: Get embeddings for each word
        word_embedding = get_glove_embeddings(word, word_index_dict, embeddings, model_type)
        if np.any(word_embedding):  # Only consider valid embeddings
            embedding_sum += word_embedding
            valid_word_count += 1

    if valid_word_count > 0:  # Step 4: Divide by number of words
        averaged_embedding = embedding_sum / valid_word_count
    else:
        averaged_embedding = np.zeros(int(model_type.split("d")[0]))

    return averaged_embedding  # Step 5: Return averaged embeddings

def get_category_embeddings(embeddings_metadata):
    """
    Get embeddings for each category
    1. Split categories into words
    2. Get embeddings for each word
    """
    model_name = embeddings_metadata["model_name"]
    st.session_state["cat_embed_" + model_name] = {}
    for category in st.session_state.categories.split(" "):
        if model_name:
            if not category in st.session_state["cat_embed_" + model_name]:
                st.session_state["cat_embed_" + model_name][category] = get_sentence_transformer_embeddings(category, model_name=model_name)
        else:
            if not category in st.session_state["cat_embed_" + model_name]:
                st.session_state["cat_embed_" + model_name][category] = get_sentence_transformer_embeddings(category)


def update_category_embeddings(embedings_metadata):
    """
    Update embeddings for each category
    """
    get_category_embeddings(embeddings_metadata)


def get_sorted_cosine_similarity(embeddings_metadata):
    """
    Get sorted cosine similarity between input sentence and categories
    Steps:
    1. Get embeddings for input sentence
    2. Get embeddings for categories (if not found, update category embeddings)
    3. Compute cosine similarity between input sentence and categories
    4. Sort cosine similarity
    5. Return sorted cosine similarity
    (50 pts)
    """
    categories = st.session_state.categories.split(" ")
    cosine_sim = {}
    if embeddings_metadata["embedding_model"] == "glove":
        word_index_dict = embeddings_metadata["word_index_dict"]
        embeddings = embeddings_metadata["embeddings"]
        model_type = embeddings_metadata["model_type"]

        input_embedding = averaged_glove_embeddings_gdrive(st.session_state.text_search,
                                                            word_index_dict,
                                                            embeddings, model_type)

        for category in categories:
            # Get embedding for category
            category_embedding = averaged_glove_embeddings_gdrive(category, word_index_dict, embeddings, model_type)
            # Compute cosine similarity
            cos_sim = cosine_similarity(input_embedding, category_embedding)
            cosine_sim[category] = cos_sim

    else:
        model_name = embeddings_metadata["model_name"]
        if not "cat_embed_" + model_name in st.session_state:
            get_category_embeddings(embeddings_metadata)

        category_embeddings = st.session_state["cat_embed_" + model_name]

        print("text_search = ", st.session_state.text_search)
        if model_name:
            input_embedding = get_sentence_transformer_embeddings(st.session_state.text_search, model_name=model_name)
        else:
            input_embedding = get_sentence_transformer_embeddings(st.session_state.text_search)
        for category in categories:
            # Update category embeddings if category not found

            if category not in category_embeddings:
                update_category_embeddings(embeddings_metadata)
                category_embeddings = st.session_state["cat_embed_" + model_name]

            # Compute cosine similarity
            category_embedding = category_embeddings[category]
            cos_sim = cosine_similarity(input_embedding, category_embedding)
            cosine_sim[category] = cos_sim

    # Sort the cosine similarities
    sorted_cosine_sim = dict(sorted(cosine_sim.items(), key=lambda item: item[1], reverse=True))

    return sorted_cosine_sim

#
# def plot_piechart(sorted_cosine_scores_items):
#     sorted_cosine_scores = np.array([
#             sorted_cosine_scores_items[index][1]
#             for index in range(len(sorted_cosine_scores_items))
#         ]
#     )
#     categories = st.session_state.categories.split(" ")
#     categories_sorted = [
#         categories[sorted_cosine_scores_items[index][0]]
#         for index in range(len(sorted_cosine_scores_items))
#     ]
#     fig, ax = plt.subplots()
#     ax.pie(sorted_cosine_scores, labels=categories_sorted, autopct="%1.1f%%")
#     st.pyplot(fig)  # Figure


def plot_piechart_helper(sorted_cosine_scores_items):
    sorted_cosine_scores = np.array(list(sorted_cosine_scores_items.values()))
    categories_sorted = list(sorted_cosine_scores_items.keys())

    fig, ax = plt.subplots(figsize=(3, 3))
    my_explode = np.zeros(len(categories_sorted))
    my_explode[0] = 0.2
    if len(categories_sorted) == 3:
        my_explode[1] = 0.1
    elif len(categories_sorted) > 3:
        my_explode[2] = 0.05

    ax.pie(
        sorted_cosine_scores,
        labels=categories_sorted,
        autopct="%1.1f%%",
        explode=my_explode,
    )

    return fig


def plot_piecharts(sorted_cosine_scores_models):
    scores_list = []
    categories = st.session_state.categories.split(" ")
    index = 0
    for model in sorted_cosine_scores_models:
        scores_list.append(sorted_cosine_scores_models[model])
        # scores_list[index] = np.array([scores_list[index][ind2][1] for ind2 in range(len(scores_list[index]))])
        index += 1

    if len(sorted_cosine_scores_models) == 2:
        fig, (ax1, ax2) = plt.subplots(2)

        categories_sorted = [
            categories[scores_list[0][index][0]] for index in range(len(scores_list[0]))
        ]
        sorted_scores = np.array(
            [scores_list[0][index][1] for index in range(len(scores_list[0]))]
        )
        ax1.pie(sorted_scores, labels=categories_sorted, autopct="%1.1f%%")

        categories_sorted = [
            categories[scores_list[1][index][0]] for index in range(len(scores_list[1]))
        ]
        sorted_scores = np.array(
            [scores_list[1][index][1] for index in range(len(scores_list[1]))]
        )
        ax2.pie(sorted_scores, labels=categories_sorted, autopct="%1.1f%%")

    st.pyplot(fig)


def plot_alatirchart(sorted_cosine_scores_models):


    models = list(sorted_cosine_scores_models.keys())
    tabs = st.tabs(models)
    figs = {}
    for model in models:
        # modified
        figs[model] = plot_piechart_helper(sorted_cosine_scores_models[model])

    for index in range(len(tabs)):
        with tabs[index]:
            st.pyplot(figs[models[index]])


### Text Search ###
st.sidebar.title("GloVe Twitter")
st.sidebar.markdown(
    """
GloVe is an unsupervised learning algorithm for obtaining vector representations for words. Pretrained on
2 billion tweets with vocabulary size of 1.2 million. Download from [Stanford NLP](http://nlp.stanford.edu/data/glove.twitter.27B.zip).

Jeffrey Pennington, Richard Socher, and Christopher D. Manning. 2014. *GloVe: Global Vectors for Word Representation*.
"""
)


if 'categories' not in st.session_state:
    st.session_state['categories'] = "Flowers Colors Cars Weather Food"
if 'text_search' not in st.session_state:
    st.session_state['text_search'] = "Roses are red, trucks are blue, and Seattle is grey right now"


model_type = st.sidebar.selectbox("Choose the model", ("25d", "50d"), index=1)

st.title("Search Based Retrieval Demo")
st.subheader(
    "Pass in space separated categories you want this search demo to be about."
)
# st.selectbox(label="Pick the categories you want this search demo to be about...",
# options=("Flowers Colors Cars Weather Food", "Chocolate Milk", "Anger Joy Sad Frustration Worry Happiness", "Positive Negative"),
# key="categories"
# )


# categories of user input
user_categories = st.text_input(
    label="Categories", value=st.session_state.categories
)

st.session_state.categories = user_categories

# st.text_input(
#     label="Categories", key="categories", value="Flowers Colors Cars Weather Food"
# )

# Categories = st.session_state.get('categories', "Flowers Colors Cars Weather Food")


print(st.session_state.get("categories"))
# print(st.session_state["categories"])

print(type(st.session_state.get("categories")))
# print(type(st.session_state["categories"]))

# print("Categories = ", categories)
# st.session_state.categories = categories

st.subheader("Pass in an input word or even a sentence")
user_text_search = st.text_input(
    label="Input your sentence",
    value=st.session_state.text_search,

)

st.session_state.text_search = user_text_search
# st.session_state.text_search = text_search

# Download glove embeddings if it doesn't exist
embeddings_path = "embeddings_" + str(model_type) + "_temp.npy"
word_index_dict_path = "word_index_dict_" + str(model_type) + "_temp.pkl"
if not os.path.isfile(embeddings_path) or not os.path.isfile(word_index_dict_path):
    print("Model type = ", model_type)
    glove_path = "Data/glove_" + str(model_type) + ".pkl"
    print("glove_path = ", glove_path)

    # Download embeddings from google drive
    with st.spinner("Downloading glove embeddings..."):
        download_glove_embeddings_gdrive(model_type)


# Load glove embeddings
word_index_dict, embeddings = load_glove_embeddings_gdrive(model_type)


# Find closest word to an input word
if st.session_state.text_search:
    # Glove embeddings
    print("Glove Embedding")
    embeddings_metadata = {
        "embedding_model": "glove",
        "word_index_dict": word_index_dict,
        "embeddings": embeddings,
        "model_type": model_type,
        "text_search": st.session_state.text_search
    }
    with st.spinner("Obtaining Cosine similarity for Glove..."):
        sorted_cosine_sim_glove = get_sorted_cosine_similarity(
             embeddings_metadata
        )

    # Sentence transformer embeddings
    print("Sentence Transformer Embedding")
    embeddings_metadata = {"embedding_model": "transformers", "model_name": "",
                            "text_search": st.session_state.text_search }
    with st.spinner("Obtaining Cosine similarity for 384d sentence transformer..."):
        sorted_cosine_sim_transformer = get_sorted_cosine_similarity(
             embeddings_metadata
        )

    # Results and Plot Pie Chart for Glove
    print("Categories are: ", st.session_state.categories)
    st.subheader(
        "Closest word I have between: "
        + st.session_state.categories
        + " as per different Embeddings"
    )

    print(sorted_cosine_sim_glove)
    print(sorted_cosine_sim_transformer)

    st.write(f"Closest category using GloVe embeddings : {list(sorted_cosine_sim_glove.keys())[0]}")
    st.write(
        f"Closest category using Sentence Transformer embeddings : {list(sorted_cosine_sim_transformer.keys())[0]}")

    plot_alatirchart(
        {
            "glove_" + str(model_type): sorted_cosine_sim_glove,
            "sentence_transformer_384": sorted_cosine_sim_transformer,
        }
    )

    st.write("")
    st.write(
        "Demo developed by [V50](https://huggingface.co/spaces/ericlkc/V50)"
    )