File size: 19,462 Bytes
c145e8a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
import sys

import numpy as np
import torch

import scipy.sparse

from chemical import *
from scoring import *

def th_ang_v(ab,bc,eps:float=1e-8):
    def th_norm(x,eps:float=1e-8):
        return x.square().sum(-1,keepdim=True).add(eps).sqrt()
    def th_N(x,alpha:float=0):
        return x/th_norm(x).add(alpha)
    ab, bc = th_N(ab),th_N(bc)
    cos_angle = torch.clamp( (ab*bc).sum(-1), -1, 1)
    sin_angle = torch.sqrt(1-cos_angle.square() + eps)
    dih = torch.stack((cos_angle,sin_angle),-1)
    return dih

def th_dih_v(ab,bc,cd):
    def th_cross(a,b):
        a,b = torch.broadcast_tensors(a,b)
        return torch.cross(a,b, dim=-1)
    def th_norm(x,eps:float=1e-8):
        return x.square().sum(-1,keepdim=True).add(eps).sqrt()
    def th_N(x,alpha:float=0):
        return x/th_norm(x).add(alpha)

    ab, bc, cd = th_N(ab),th_N(bc),th_N(cd)
    n1 = th_N( th_cross(ab,bc) )
    n2 = th_N( th_cross(bc,cd) )
    sin_angle = (th_cross(n1,bc)*n2).sum(-1)
    cos_angle = (n1*n2).sum(-1)
    dih = torch.stack((cos_angle,sin_angle),-1)
    return dih

def th_dih(a,b,c,d):
    return th_dih_v(a-b,b-c,c-d)

# More complicated version splits error in CA-N and CA-C (giving more accurate CB position)
# It returns the rigid transformation from local frame to global frame
def rigid_from_3_points(N, Ca, C, non_ideal=False, eps=1e-8):
    #N, Ca, C - [B,L, 3]
    #R - [B,L, 3, 3], det(R)=1, inv(R) = R.T, R is a rotation matrix
    B,L = N.shape[:2]
    
    v1 = C-Ca
    v2 = N-Ca
    e1 = v1/(torch.norm(v1, dim=-1, keepdim=True)+eps)
    u2 = v2-(torch.einsum('bli, bli -> bl', e1, v2)[...,None]*e1)
    e2 = u2/(torch.norm(u2, dim=-1, keepdim=True)+eps)
    e3 = torch.cross(e1, e2, dim=-1)
    R = torch.cat([e1[...,None], e2[...,None], e3[...,None]], axis=-1) #[B,L,3,3] - rotation matrix
    
    if non_ideal:
        v2 = v2/(torch.norm(v2, dim=-1, keepdim=True)+eps)
        cosref = torch.sum(e1*v2, dim=-1) # cosine of current N-CA-C bond angle
        costgt = cos_ideal_NCAC.item()
        cos2del = torch.clamp( cosref*costgt + torch.sqrt((1-cosref*cosref)*(1-costgt*costgt)+eps), min=-1.0, max=1.0 )
        cosdel = torch.sqrt(0.5*(1+cos2del)+eps)
        sindel = torch.sign(costgt-cosref) * torch.sqrt(1-0.5*(1+cos2del)+eps)
        Rp = torch.eye(3, device=N.device).repeat(B,L,1,1)
        Rp[:,:,0,0] = cosdel
        Rp[:,:,0,1] = -sindel
        Rp[:,:,1,0] = sindel
        Rp[:,:,1,1] = cosdel
    
        R = torch.einsum('blij,bljk->blik', R,Rp)

    return R, Ca

def get_tor_mask(seq, torsion_indices, mask_in=None):
    B,L = seq.shape[:2]
    tors_mask = torch.ones((B,L,10), dtype=torch.bool, device=seq.device)
    tors_mask[...,3:7] = torsion_indices[seq,:,-1] > 0
    tors_mask[:,0,1] = False
    tors_mask[:,-1,0] = False

    # mask for additional angles
    tors_mask[:,:,7] = seq!=aa2num['GLY']
    tors_mask[:,:,8] = seq!=aa2num['GLY']
    tors_mask[:,:,9] = torch.logical_and( seq!=aa2num['GLY'], seq!=aa2num['ALA'] )
    tors_mask[:,:,9] = torch.logical_and( tors_mask[:,:,9], seq!=aa2num['UNK'] )
    tors_mask[:,:,9] = torch.logical_and( tors_mask[:,:,9], seq!=aa2num['MAS'] )

    if mask_in != None:
        # mask for missing atoms
        # chis
        ti0 = torch.gather(mask_in,2,torsion_indices[seq,:,0])
        ti1 = torch.gather(mask_in,2,torsion_indices[seq,:,1])
        ti2 = torch.gather(mask_in,2,torsion_indices[seq,:,2])
        ti3 = torch.gather(mask_in,2,torsion_indices[seq,:,3])
        is_valid = torch.stack((ti0, ti1, ti2, ti3), dim=-2).all(dim=-1)
        tors_mask[...,3:7] = torch.logical_and(tors_mask[...,3:7], is_valid)
        tors_mask[:,:,7] = torch.logical_and(tors_mask[:,:,7], mask_in[:,:,4]) # CB exist?
        tors_mask[:,:,8] = torch.logical_and(tors_mask[:,:,8], mask_in[:,:,4]) # CB exist?
        tors_mask[:,:,9] = torch.logical_and(tors_mask[:,:,9], mask_in[:,:,5]) # XG exist?

    return tors_mask

def get_torsions(xyz_in, seq, torsion_indices, torsion_can_flip, ref_angles, mask_in=None):
    B,L = xyz_in.shape[:2]
    
    tors_mask = get_tor_mask(seq, torsion_indices, mask_in)
    
    # torsions to restrain to 0 or 180degree
    tors_planar = torch.zeros((B, L, 10), dtype=torch.bool, device=xyz_in.device)
    tors_planar[:,:,5] = seq == aa2num['TYR'] # TYR chi 3 should be planar

    # idealize given xyz coordinates before computing torsion angles
    xyz = xyz_in.clone()
    Rs, Ts = rigid_from_3_points(xyz[...,0,:],xyz[...,1,:],xyz[...,2,:])
    Nideal = torch.tensor([-0.5272, 1.3593, 0.000], device=xyz_in.device)
    Cideal = torch.tensor([1.5233, 0.000, 0.000], device=xyz_in.device)
    xyz[...,0,:] = torch.einsum('brij,j->bri', Rs, Nideal) + Ts
    xyz[...,2,:] = torch.einsum('brij,j->bri', Rs, Cideal) + Ts

    torsions = torch.zeros( (B,L,10,2), device=xyz.device )
    # avoid undefined angles for H generation
    torsions[:,0,1,0] = 1.0
    torsions[:,-1,0,0] = 1.0

    # omega
    torsions[:,:-1,0,:] = th_dih(xyz[:,:-1,1,:],xyz[:,:-1,2,:],xyz[:,1:,0,:],xyz[:,1:,1,:])
    # phi
    torsions[:,1:,1,:] = th_dih(xyz[:,:-1,2,:],xyz[:,1:,0,:],xyz[:,1:,1,:],xyz[:,1:,2,:])
    # psi
    torsions[:,:,2,:] = -1 * th_dih(xyz[:,:,0,:],xyz[:,:,1,:],xyz[:,:,2,:],xyz[:,:,3,:])

    # chis
    ti0 = torch.gather(xyz,2,torsion_indices[seq,:,0,None].repeat(1,1,1,3))
    ti1 = torch.gather(xyz,2,torsion_indices[seq,:,1,None].repeat(1,1,1,3))
    ti2 = torch.gather(xyz,2,torsion_indices[seq,:,2,None].repeat(1,1,1,3))
    ti3 = torch.gather(xyz,2,torsion_indices[seq,:,3,None].repeat(1,1,1,3))
    torsions[:,:,3:7,:] = th_dih(ti0,ti1,ti2,ti3)
    
    # CB bend
    NC = 0.5*( xyz[:,:,0,:3] + xyz[:,:,2,:3] )
    CA = xyz[:,:,1,:3]
    CB = xyz[:,:,4,:3]
    t = th_ang_v(CB-CA,NC-CA)
    t0 = ref_angles[seq][...,0,:]
    torsions[:,:,7,:] = torch.stack( 
        (torch.sum(t*t0,dim=-1),t[...,0]*t0[...,1]-t[...,1]*t0[...,0]),
        dim=-1 )
    
    # CB twist
    NCCA = NC-CA
    NCp = xyz[:,:,2,:3] - xyz[:,:,0,:3]
    NCpp = NCp - torch.sum(NCp*NCCA, dim=-1, keepdim=True)/ torch.sum(NCCA*NCCA, dim=-1, keepdim=True) * NCCA
    t = th_ang_v(CB-CA,NCpp)
    t0 = ref_angles[seq][...,1,:]
    torsions[:,:,8,:] = torch.stack( 
        (torch.sum(t*t0,dim=-1),t[...,0]*t0[...,1]-t[...,1]*t0[...,0]),
        dim=-1 )

    # CG bend
    CG = xyz[:,:,5,:3]
    t = th_ang_v(CG-CB,CA-CB)
    t0 = ref_angles[seq][...,2,:]
    torsions[:,:,9,:] = torch.stack( 
        (torch.sum(t*t0,dim=-1),t[...,0]*t0[...,1]-t[...,1]*t0[...,0]),
        dim=-1 )
    
    mask0 = torch.isnan(torsions[...,0]).nonzero()
    mask1 = torch.isnan(torsions[...,1]).nonzero()
    torsions[mask0[:,0],mask0[:,1],mask0[:,2],0] = 1.0
    torsions[mask1[:,0],mask1[:,1],mask1[:,2],1] = 0.0

    # alt chis
    torsions_alt = torsions.clone()
    torsions_alt[torsion_can_flip[seq,:]] *= -1

    return torsions, torsions_alt, tors_mask, tors_planar

def get_tips(xyz, seq):
    B,L = xyz.shape[:2]

    xyz_tips = torch.gather(xyz, 2, tip_indices.to(xyz.device)[seq][:,:,None,None].expand(-1,-1,-1,3)).reshape(B, L, 3)
    mask = ~(torch.isnan(xyz_tips[:,:,0]))
    if torch.isnan(xyz_tips).any(): # replace NaN tip atom with virtual Cb atom
        # three anchor atoms
        N  = xyz[:,:,0]
        Ca = xyz[:,:,1]
        C  = xyz[:,:,2]

        # recreate Cb given N,Ca,C
        b = Ca - N
        c = C - Ca
        a = torch.cross(b, c, dim=-1)
        Cb = -0.58273431*a + 0.56802827*b - 0.54067466*c + Ca    

        xyz_tips = torch.where(torch.isnan(xyz_tips), Cb, xyz_tips)
    return xyz_tips, mask

# process ideal frames
def make_frame(X, Y):
    Xn = X / torch.linalg.norm(X)
    Y = Y - torch.dot(Y, Xn) * Xn
    Yn = Y / torch.linalg.norm(Y)
    Z = torch.cross(Xn,Yn)
    Zn =  Z / torch.linalg.norm(Z)

    return torch.stack((Xn,Yn,Zn), dim=-1)

def cross_product_matrix(u):
    B, L = u.shape[:2]
    matrix = torch.zeros((B, L, 3, 3), device=u.device)
    matrix[:,:,0,1] = -u[...,2]
    matrix[:,:,0,2] = u[...,1]
    matrix[:,:,1,0] = u[...,2]
    matrix[:,:,1,2] = -u[...,0]
    matrix[:,:,2,0] = -u[...,1]
    matrix[:,:,2,1] = u[...,0]
    return matrix

# writepdb
def writepdb(filename, atoms, seq, idx_pdb=None, bfacts=None):
    f = open(filename,"w")
    ctr = 1
    scpu = seq.cpu().squeeze()
    atomscpu = atoms.cpu().squeeze()
    if bfacts is None:
        bfacts = torch.zeros(atomscpu.shape[0])
    if idx_pdb is None:
        idx_pdb = 1 + torch.arange(atomscpu.shape[0])

    Bfacts = torch.clamp( bfacts.cpu(), 0, 1)
    for i,s in enumerate(scpu):
        if (len(atomscpu.shape)==2):
            f.write ("%-6s%5s %4s %3s %s%4d    %8.3f%8.3f%8.3f%6.2f%6.2f\n"%(
                    "ATOM", ctr, " CA ", num2aa[s], 
                    "A", idx_pdb[i], atomscpu[i,0], atomscpu[i,1], atomscpu[i,2],
                    1.0, Bfacts[i] ) )
            ctr += 1
        elif atomscpu.shape[1]==3:
            for j,atm_j in enumerate([" N  "," CA "," C  "]):
                f.write ("%-6s%5s %4s %3s %s%4d    %8.3f%8.3f%8.3f%6.2f%6.2f\n"%(
                        "ATOM", ctr, atm_j, num2aa[s], 
                        "A", idx_pdb[i], atomscpu[i,j,0], atomscpu[i,j,1], atomscpu[i,j,2],
                        1.0, Bfacts[i] ) )
                ctr += 1
        else: 
            natoms = atomscpu.shape[1]
            if (natoms!=14 and natoms!=27):
                print ('bad size!', atoms.shape)
                assert(False)
            atms = aa2long[s]
            # his prot hack
            if (s==8 and torch.linalg.norm( atomscpu[i,9,:]-atomscpu[i,5,:] ) < 1.7):
                atms = (
                    " N  "," CA "," C  "," O  "," CB "," CG "," NE2"," CD2"," CE1"," ND1",
                      None,  None,  None,  None," H  "," HA ","1HB ","2HB "," HD2"," HE1",
                    " HD1",  None,  None,  None,  None,  None,  None) # his_d

            for j,atm_j in enumerate(atms):
                if (j<natoms and atm_j is not None): # and not torch.isnan(atomscpu[i,j,:]).any()):
                    f.write ("%-6s%5s %4s %3s %s%4d    %8.3f%8.3f%8.3f%6.2f%6.2f\n"%(
                        "ATOM", ctr, atm_j, num2aa[s], 
                        "A", idx_pdb[i], atomscpu[i,j,0], atomscpu[i,j,1], atomscpu[i,j,2],
                        1.0, Bfacts[i] ) )
                    ctr += 1


# resolve tip atom indices
tip_indices = torch.full((22,), 0)
for i in range(22):
    tip_atm = aa2tip[i]
    atm_long = aa2long[i]
    tip_indices[i] = atm_long.index(tip_atm)

# resolve torsion indices
torsion_indices = torch.full((22,4,4),0)
torsion_can_flip = torch.full((22,10),False,dtype=torch.bool)
for i in range(22):
    i_l, i_a = aa2long[i], aa2longalt[i]
    for j in range(4):
        if torsions[i][j] is None:
            continue
        for k in range(4):
            a = torsions[i][j][k]
            torsion_indices[i,j,k] = i_l.index(a)
            if (i_l.index(a) != i_a.index(a)):
                torsion_can_flip[i,3+j] = True ##bb tors never flip
# HIS is a special case
torsion_can_flip[8,4]=False

# build the mapping from atoms in the full rep (Nx27) to the "alternate" rep
allatom_mask = torch.zeros((22,27), dtype=torch.bool)
long2alt = torch.zeros((22,27), dtype=torch.long)
for i in range(22):
    i_l, i_lalt = aa2long[i],  aa2longalt[i]
    for j,a in enumerate(i_l):
        if (a is None):
            long2alt[i,j] = j
        else:
            long2alt[i,j] = i_lalt.index(a)
            allatom_mask[i,j] = True

# bond graph traversal
num_bonds = torch.zeros((22,27,27), dtype=torch.long)
for i in range(22):
    num_bonds_i = np.zeros((27,27))
    for (bnamei,bnamej) in aabonds[i]:
        bi,bj = aa2long[i].index(bnamei),aa2long[i].index(bnamej)
        num_bonds_i[bi,bj] = 1
    num_bonds_i = scipy.sparse.csgraph.shortest_path (num_bonds_i,directed=False)
    num_bonds_i[num_bonds_i>=4] = 4
    num_bonds[i,...] = torch.tensor(num_bonds_i)


# LJ/LK scoring parameters
ljlk_parameters = torch.zeros((22,27,5), dtype=torch.float)
lj_correction_parameters = torch.zeros((22,27,4), dtype=bool) # donor/acceptor/hpol/disulf
for i in range(22):
    for j,a in enumerate(aa2type[i]):
        if (a is not None):
            ljlk_parameters[i,j,:] = torch.tensor( type2ljlk[a] )
            lj_correction_parameters[i,j,0] = (type2hb[a]==HbAtom.DO)+(type2hb[a]==HbAtom.DA)
            lj_correction_parameters[i,j,1] = (type2hb[a]==HbAtom.AC)+(type2hb[a]==HbAtom.DA)
            lj_correction_parameters[i,j,2] = (type2hb[a]==HbAtom.HP)
            lj_correction_parameters[i,j,3] = (a=="SH1" or a=="HS")

# hbond scoring parameters
def donorHs(D,bonds,atoms):
    dHs = []
    for (i,j) in bonds:
        if (i==D):
            idx_j = atoms.index(j)
            if (idx_j>=14):  # if atom j is a hydrogen
                dHs.append(idx_j)
        if (j==D):
            idx_i = atoms.index(i)
            if (idx_i>=14):  # if atom j is a hydrogen
                dHs.append(idx_i)
    assert (len(dHs)>0)
    return dHs

def acceptorBB0(A,hyb,bonds,atoms):
    if (hyb == HbHybType.SP2):
        for (i,j) in bonds:
            if (i==A):
                B = atoms.index(j)
                if (B<14):
                    break
            if (j==A):
                B = atoms.index(i)
                if (B<14):
                    break
        for (i,j) in bonds:
            if (i==atoms[B]):
                B0 = atoms.index(j)
                if (B0<14):
                    break
            if (j==atoms[B]):
                B0 = atoms.index(i)
                if (B0<14):
                    break
    elif (hyb == HbHybType.SP3 or hyb == HbHybType.RING):
        for (i,j) in bonds:
            if (i==A):
                B = atoms.index(j)
                if (B<14):
                    break
            if (j==A):
                B = atoms.index(i)
                if (B<14):
                    break
        for (i,j) in bonds:
            if (i==A and j!=atoms[B]):
                B0 = atoms.index(j)
                break
            if (j==A and i!=atoms[B]):
                B0 = atoms.index(i)
                break

    return B,B0


hbtypes = torch.full((22,27,3),-1, dtype=torch.long) # (donortype, acceptortype, acchybtype)
hbbaseatoms = torch.full((22,27,2),-1, dtype=torch.long) # (B,B0) for acc; (D,-1) for don
hbpolys = torch.zeros((HbDonType.NTYPES,HbAccType.NTYPES,3,15)) # weight,xmin,xmax,ymin,ymax,c9,...,c0

for i in range(22):
    for j,a in enumerate(aa2type[i]):
        if (a in type2dontype):
            j_hs = donorHs(aa2long[i][j],aabonds[i],aa2long[i])
            for j_h in j_hs:
                hbtypes[i,j_h,0] = type2dontype[a]
                hbbaseatoms[i,j_h,0] = j
        if (a in type2acctype):
            j_b, j_b0 = acceptorBB0(aa2long[i][j],type2hybtype[a],aabonds[i],aa2long[i])
            hbtypes[i,j,1] = type2acctype[a]
            hbtypes[i,j,2] = type2hybtype[a]
            hbbaseatoms[i,j,0] = j_b
            hbbaseatoms[i,j,1] = j_b0

for i in range(HbDonType.NTYPES):
    for j in range(HbAccType.NTYPES):
        weight = dontype2wt[i]*acctype2wt[j]

        pdist,pbah,pahd = hbtypepair2poly[(i,j)]
        xrange,yrange,coeffs = hbpolytype2coeffs[pdist]
        hbpolys[i,j,0,0] = weight
        hbpolys[i,j,0,1:3] = torch.tensor(xrange)
        hbpolys[i,j,0,3:5] = torch.tensor(yrange)
        hbpolys[i,j,0,5:] = torch.tensor(coeffs)
        xrange,yrange,coeffs = hbpolytype2coeffs[pahd]
        hbpolys[i,j,1,0] = weight
        hbpolys[i,j,1,1:3] = torch.tensor(xrange)
        hbpolys[i,j,1,3:5] = torch.tensor(yrange)
        hbpolys[i,j,1,5:] = torch.tensor(coeffs)
        xrange,yrange,coeffs = hbpolytype2coeffs[pbah]
        hbpolys[i,j,2,0] = weight
        hbpolys[i,j,2,1:3] = torch.tensor(xrange)
        hbpolys[i,j,2,3:5] = torch.tensor(yrange)
        hbpolys[i,j,2,5:] = torch.tensor(coeffs)

# kinematic parameters
base_indices = torch.full((22,27),0, dtype=torch.long)
xyzs_in_base_frame = torch.ones((22,27,4))
RTs_by_torsion = torch.eye(4).repeat(22,7,1,1)
reference_angles = torch.ones((22,3,2))

for i in range(22):
    i_l = aa2long[i]
    for name, base, coords in ideal_coords[i]:
        idx = i_l.index(name)
        base_indices[i,idx] = base
        xyzs_in_base_frame[i,idx,:3] = torch.tensor(coords)

    # omega frame
    RTs_by_torsion[i,0,:3,:3] = torch.eye(3)
    RTs_by_torsion[i,0,:3,3] = torch.zeros(3)

    # phi frame
    RTs_by_torsion[i,1,:3,:3] = make_frame(
        xyzs_in_base_frame[i,0,:3] - xyzs_in_base_frame[i,1,:3],
        torch.tensor([1.,0.,0.])
    )
    RTs_by_torsion[i,1,:3,3] = xyzs_in_base_frame[i,0,:3]

    # psi frame
    RTs_by_torsion[i,2,:3,:3] = make_frame(
        xyzs_in_base_frame[i,2,:3] - xyzs_in_base_frame[i,1,:3],
        xyzs_in_base_frame[i,1,:3] - xyzs_in_base_frame[i,0,:3]
    )
    RTs_by_torsion[i,2,:3,3] = xyzs_in_base_frame[i,2,:3]

    # chi1 frame
    if torsions[i][0] is not None:
        a0,a1,a2 = torsion_indices[i,0,0:3]
        RTs_by_torsion[i,3,:3,:3] = make_frame(
            xyzs_in_base_frame[i,a2,:3]-xyzs_in_base_frame[i,a1,:3],
            xyzs_in_base_frame[i,a0,:3]-xyzs_in_base_frame[i,a1,:3],
        )
        RTs_by_torsion[i,3,:3,3] = xyzs_in_base_frame[i,a2,:3]

    # chi2~4 frame
    for j in range(1,4):
        if torsions[i][j] is not None:
            a2 = torsion_indices[i,j,2]
            if ((i==18 and j==2) or (i==8 and j==2)):  # TYR CZ-OH & HIS CE1-HE1 a special case
                a0,a1 = torsion_indices[i,j,0:2]
                RTs_by_torsion[i,3+j,:3,:3] = make_frame(
                    xyzs_in_base_frame[i,a2,:3]-xyzs_in_base_frame[i,a1,:3],
                    xyzs_in_base_frame[i,a0,:3]-xyzs_in_base_frame[i,a1,:3] )
            else:
                RTs_by_torsion[i,3+j,:3,:3] = make_frame(
                    xyzs_in_base_frame[i,a2,:3],
                    torch.tensor([-1.,0.,0.]), )
            RTs_by_torsion[i,3+j,:3,3] = xyzs_in_base_frame[i,a2,:3]
            

    # CB/CG angles
    NCr = 0.5*(xyzs_in_base_frame[i,0,:3]+xyzs_in_base_frame[i,2,:3])
    CAr = xyzs_in_base_frame[i,1,:3]
    CBr = xyzs_in_base_frame[i,4,:3]
    CGr = xyzs_in_base_frame[i,5,:3]
    reference_angles[i,0,:]=th_ang_v(CBr-CAr,NCr-CAr)
    NCp = xyzs_in_base_frame[i,2,:3]-xyzs_in_base_frame[i,0,:3]
    NCpp = NCp - torch.dot(NCp,NCr)/ torch.dot(NCr,NCr) * NCr
    reference_angles[i,1,:]=th_ang_v(CBr-CAr,NCpp)
    reference_angles[i,2,:]=th_ang_v(CGr,torch.tensor([-1.,0.,0.]))

def get_rmsd(a, b, eps=1e-6):
    '''
    align crds b to a : always use all alphas
    expexted tensor of shape (L,3)
    jake's torch adapted version
    '''
    assert a.shape == b.shape, 'make sure tensors are the same size'
    L = a.shape[0]
    assert a.shape == torch.Size([L,3]), 'make sure tensors are in format [L,3]'

    # center to CA centroid
    a = a - a.mean(dim=0)
    b = b - b.mean(dim=0)

    # Computation of the covariance matrix
    C = torch.einsum('kj,ji->ki', torch.transpose(b.type(torch.float32),0,1), a.type(torch.float32))

    # Compute optimal rotation matrix using SVD
    V, S, W = torch.linalg.svd(C)

    # get sign to ensure right-handedness
    d = torch.ones([3,3])
    d[:,-1] = torch.sign(torch.linalg.det(V)*torch.linalg.det(W))

    # Rotation matrix U
    U = torch.einsum('kj,ji->ki',(d*V),W)

    # Rotate xyz_hal
    rP = torch.einsum('kj,ji->ki',b.type(torch.float32),U.type(torch.float32))

    L = rP.shape[0]
    rmsd = torch.sqrt(torch.sum((rP-a)*(rP-a), axis=(0,1)) / L + eps)

    return rmsd, U