Spaces:
Runtime error
Runtime error
File size: 19,500 Bytes
b537101 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 |
import os
import wget
resources = os.getenv('resources_new')
resources_filename = wget.download(resources)
os.system('tar zxvf {}'.format(resources_filename))
os.system('ls -l')
import argparse
import datetime
import json
import os
import time
import torch
import gradio as gr
import requests
from conversation import default_conversation
from gradio_css import code_highlight_css
from gradio_patch import Chatbot as grChatbot
from serve_utils import (
add_text, after_process_image, disable_btn, no_change_btn,
downvote_last_response, enable_btn, flag_last_response,
get_window_url_params, init, regenerate, upvote_last_response,
after_process_video
)
from model_worker import mPLUG_Owl_Server
from model_utils import post_process_code
SHARED_UI_WARNING = f'''### [NOTE] You can duplicate and use it with a paid private GPU.
<a class="duplicate-button" style="display:inline-block" target="_blank" href="https://huggingface.co/spaces/MAGAer13/mPLUG-Owl?duplicate=true"><img style="margin-top:0;margin-bottom:0" src="https://huggingface.co/datasets/huggingface/badges/raw/main/duplicate-this-space-md.svg" alt="Duplicate Space"></a>
'''
def load_demo(url_params, request: gr.Request):
dropdown_update = gr.Dropdown.update(visible=True)
state = default_conversation.copy()
return (state,
dropdown_update,
gr.Chatbot.update(visible=True),
gr.Textbox.update(visible=True),
gr.Button.update(visible=True),
gr.Row.update(visible=True),
gr.Accordion.update(visible=True))
def clear_history(request: gr.Request):
state = default_conversation.copy()
return (state, state.to_gradio_chatbot(), "", None, None) + (disable_btn,) * 5
def http_bot(state, max_output_tokens, temperature, top_k, top_p,
num_beams, no_repeat_ngram_size, length_penalty,
do_sample, request: gr.Request):
if state.skip_next:
# This generate call is skipped due to invalid inputs
yield (state, state.to_gradio_chatbot()) + (no_change_btn,) * 5
return
prompt = after_process_image(state.get_prompt())
images = state.get_images()
data = {
"text_input": prompt,
"images": images if len(images) > 0 else [],
"generation_config": {
"top_k": int(top_k),
"top_p": float(top_p),
"num_beams": int(num_beams),
"no_repeat_ngram_size": int(no_repeat_ngram_size),
"length_penalty": float(length_penalty),
"do_sample": bool(do_sample),
"temperature": float(temperature),
"max_new_tokens": min(int(max_output_tokens), 1536),
}
}
state.messages[-1][-1] = "▌"
yield (state, state.to_gradio_chatbot()) + (disable_btn,) * 5
try:
for chunk in model.predict(data):
if chunk:
if chunk[1]:
output = chunk[0].strip()
output = post_process_code(output)
state.messages[-1][-1] = output + "▌"
yield (state, state.to_gradio_chatbot()) + (disable_btn,) * 5
else:
output = chunk[0].strip()
state.messages[-1][-1] = output
yield (state, state.to_gradio_chatbot()) + (disable_btn, disable_btn, disable_btn, enable_btn, enable_btn)
return
time.sleep(0.03)
except requests.exceptions.RequestException as e:
state.messages[-1][-1] = "**NETWORK ERROR DUE TO HIGH TRAFFIC. PLEASE REGENERATE OR REFRESH THIS PAGE.**"
yield (state, state.to_gradio_chatbot()) + (disable_btn, disable_btn, disable_btn, enable_btn, enable_btn)
return
state.messages[-1][-1] = state.messages[-1][-1][:-1]
yield (state, state.to_gradio_chatbot()) + (enable_btn,) * 5
def add_text_http_bot(
state, text, image, video, num_frames,
max_output_tokens, temperature, top_k, top_p,
num_beams, no_repeat_ngram_size, length_penalty,
do_sample, request: gr.Request):
if len(text) <= 0 and image is None and video is None:
state.skip_next = True
return (state, state.to_gradio_chatbot(), "", None, None) + (no_change_btn,) * 5
if image is not None:
if '<image>' not in text:
text = text + '\n<image>'
text = (text, image)
if video is not None:
if '<|video|>' not in text:
text = text + '\n<|video|>'
text = (text, video)
state.append_message(state.roles[0], text)
state.append_message(state.roles[1], None)
state.skip_next = False
yield (state, state.to_gradio_chatbot(), "", None, None) + (disable_btn,) * 5
if state.skip_next:
# This generate call is skipped due to invalid inputs
yield (state, state.to_gradio_chatbot(), "", None, None) + (no_change_btn,) * 5
return
prompt = state.get_prompt(num_frames)
prompt = after_process_image(prompt)
prompt = after_process_video(prompt)
prompt = prompt.replace("Human: \n", "")
images = state.get_images()
videos = state.get_videos(num_frames)
data = {
"text_input": prompt,
"images": images if len(images) > 0 else [],
"videos": videos if len(videos) > 0 else [],
"video": video if video is not None else None,
"generation_config": {
"top_k": int(top_k),
"top_p": float(top_p),
"num_beams": int(num_beams),
"no_repeat_ngram_size": int(no_repeat_ngram_size),
"length_penalty": float(length_penalty),
"do_sample": bool(do_sample),
"temperature": float(temperature),
"max_new_tokens": min(int(max_output_tokens), 1536),
}
}
state.messages[-1][-1] = "▌"
yield (state, state.to_gradio_chatbot(), "", None, None) + (disable_btn,) * 5
try:
for chunk in model.predict(data):
if chunk:
if chunk[1]:
output = chunk[0].strip()
output = post_process_code(output)
state.messages[-1][-1] = output + "▌"
yield (state, state.to_gradio_chatbot(), "", None, None) + (disable_btn,) * 5
else:
output = chunk[0].strip()
state.messages[-1][-1] = output
yield (state, state.to_gradio_chatbot(), "", None, None) + (disable_btn, disable_btn, disable_btn, enable_btn, enable_btn)
return
time.sleep(0.03)
except requests.exceptions.RequestException as e:
state.messages[-1][-1] = "**NETWORK ERROR DUE TO HIGH TRAFFIC. PLEASE REGENERATE OR REFRESH THIS PAGE.**"
yield (state, state.to_gradio_chatbot(), "", None, None) + (disable_btn, disable_btn, disable_btn, enable_btn, enable_btn)
return
state.messages[-1][-1] = state.messages[-1][-1][:-1]
yield (state, state.to_gradio_chatbot(), "", None, None) + (enable_btn,) * 5
def regenerate_http_bot(state, num_frames,
max_output_tokens, temperature, top_k, top_p,
num_beams, no_repeat_ngram_size, length_penalty,
do_sample, request: gr.Request):
state.messages[-1][-1] = None
state.skip_next = False
yield (state, state.to_gradio_chatbot(), "", None, None) + (disable_btn,) * 5
prompt = after_process_image(state.get_prompt(num_frames))
images = state.get_images()
videos = state.get_videos(num_frames)
data = {
"text_input": prompt,
"images": images if len(images) > 0 else [],
"videos": videos if len(videos) > 0 else [],
"generation_config": {
"top_k": int(top_k),
"top_p": float(top_p),
"num_beams": int(num_beams),
"no_repeat_ngram_size": int(no_repeat_ngram_size),
"length_penalty": float(length_penalty),
"do_sample": bool(do_sample),
"temperature": float(temperature),
"max_new_tokens": min(int(max_output_tokens), 1536),
}
}
state.messages[-1][-1] = "▌"
yield (state, state.to_gradio_chatbot(), "", None, None) + (disable_btn,) * 5
try:
for chunk in model.predict(data):
if chunk:
if chunk[1]:
output = chunk[0].strip()
output = post_process_code(output)
state.messages[-1][-1] = output + "▌"
yield (state, state.to_gradio_chatbot(), "", None, None) + (disable_btn,) * 5
else:
output = chunk[0].strip()
state.messages[-1][-1] = output
yield (state, state.to_gradio_chatbot(), "", None, None) + (disable_btn, disable_btn, disable_btn, enable_btn, enable_btn)
return
time.sleep(0.03)
except requests.exceptions.RequestException as e:
state.messages[-1][-1] = "**NETWORK ERROR DUE TO HIGH TRAFFIC. PLEASE REGENERATE OR REFRESH THIS PAGE.**"
yield (state, state.to_gradio_chatbot(), "", None, None) + (disable_btn, disable_btn, disable_btn, enable_btn, enable_btn)
return
state.messages[-1][-1] = state.messages[-1][-1][:-1]
yield (state, state.to_gradio_chatbot(), "", None, None) + (enable_btn,) * 5
# [![Star on GitHub](https://img.shields.io/github/stars/X-PLUG/mPLUG-Owl.svg?style=social)](https://github.com/X-PLUG/mPLUG-Owl/stargazers)
# **If you are facing ERROR, it might be Out-Of-Memory (OOM) issue due to the limited GPU memory, please refresh the page to restart.** Besides, we recommand you to duplicate the space with a single A10 GPU to have a better experience. Or you can visit our demo hosted on [Modelscope](https://www.modelscope.cn/studios/damo/mPLUG-Owl/summary) which is hosted on a V100 machine.
title_markdown = ("""
<h1 align="center"><a href="https://github.com/X-PLUG/mPLUG-Owl"><img src="https://s1.ax1x.com/2023/05/12/p9yGA0g.png", alt="mPLUG-Owl" border="0" style="margin: 0 auto; height: 200px;" /></a> </h1>
<h2 align="center"> mPLUG-Owl🦉: Modularization Empowers Large Language Models with Multimodality </h2>
<h5 align="center"> If you like our project, please give us a star ✨ on Github for latest update. </h2>
<div align="center">
<div style="display:flex; gap: 0.25rem;" align="center">
<a href='https://github.com/X-PLUG/mPLUG-Owl'><img src='https://img.shields.io/badge/Github-Code-blue'></a>
<a href="https://arxiv.org/abs/2304.14178"><img src="https://img.shields.io/badge/Arxiv-2304.14178-red"></a>
<a href='https://github.com/X-PLUG/mPLUG-Owl/stargazers'><img src='https://img.shields.io/github/stars/X-PLUG/mPLUG-Owl.svg?style=social'></a>
</div>
</div>
**Notice**: The output is generated by top-k sampling scheme and may involve some randomness. For multiple images and video, we cannot ensure its performance since only image-text / video-text pairs are used during training.
**We recommend only one image or video per conversation session.** If you want to start chatting with new images or videos, we recommend you to **CLEAR** the history to restart.
""")
tos_markdown = ("""
### Terms of use
By using this service, users are required to agree to the following terms:
The service is a research preview intended for non-commercial use only. It only provides limited safety measures and may generate offensive content. It must not be used for any illegal, harmful, violent, racist, or sexual purposes. The service may collect user dialogue data for future research.
Please click the "Flag" button if you get any inappropriate answer! We will collect those to keep improving our moderator.
For an optimal experience, please use desktop computers for this demo, as mobile devices may compromise its quality.
**Copyright 2023 Alibaba DAMO Academy.**
""")
learn_more_markdown = ("""
### License
The service is a research preview intended for non-commercial use only, subject to the model [License](https://github.com/facebookresearch/llama/blob/main/MODEL_CARD.md) of LLaMA, [Terms of Use](https://openai.com/policies/terms-of-use) of the data generated by OpenAI, and [Privacy Practices](https://chrome.google.com/webstore/detail/sharegpt-share-your-chatg/daiacboceoaocpibfodeljbdfacokfjb) of ShareGPT. Please contact us if you find any potential violation.
""")
css = code_highlight_css + """
pre {
white-space: pre-wrap; /* Since CSS 2.1 */
white-space: -moz-pre-wrap; /* Mozilla, since 1999 */
white-space: -pre-wrap; /* Opera 4-6 */
white-space: -o-pre-wrap; /* Opera 7 */
word-wrap: break-word; /* Internet Explorer 5.5+ */
}
"""
def build_demo():
# with gr.Blocks(title="mPLUG-Owl🦉", theme=gr.themes.Base(), css=css) as demo:
with gr.Blocks(title="mPLUG-Owl🦉", css=css) as demo:
state = gr.State()
gr.Markdown(SHARED_UI_WARNING)
gr.Markdown(title_markdown)
with gr.Row():
with gr.Column(scale=3):
imagebox = gr.Image(type="pil")
videobox = gr.Video()
with gr.Accordion("Parameters", open=True, visible=False) as parameter_row:
max_output_tokens = gr.Slider(minimum=0, maximum=1024, value=512, step=64, interactive=True, label="Max output tokens",)
temperature = gr.Slider(minimum=0, maximum=1, value=1, step=0.1, interactive=True, label="Temperature",)
top_k = gr.Slider(minimum=1, maximum=5, value=3, step=1, interactive=True, label="Top K",)
top_p = gr.Slider(minimum=0, maximum=1, value=0.9, step=0.1, interactive=True, label="Top p",)
length_penalty = gr.Slider(minimum=1, maximum=5, value=1, step=0.1, interactive=True, label="length_penalty",)
num_beams = gr.Slider(minimum=1, maximum=5, value=1, step=1, interactive=True, label="Beam Size",)
no_repeat_ngram_size = gr.Slider(minimum=1, maximum=5, value=2, step=1, interactive=True, label="no_repeat_ngram_size",)
num_frames = gr.Slider(minimum=8, maximum=32, value=8, step=4, interactive=True, label="Number of Frames",)
do_sample = gr.Checkbox(interactive=True, value=True, label="do_sample")
gr.Markdown(tos_markdown)
with gr.Column(scale=6):
chatbot = grChatbot(elem_id="chatbot", visible=False).style(height=1000)
with gr.Row():
with gr.Column(scale=8):
textbox = gr.Textbox(show_label=False,
placeholder="Enter text and press ENTER", visible=False).style(container=False)
with gr.Column(scale=1, min_width=60):
submit_btn = gr.Button(value="Submit", visible=False)
with gr.Row(visible=False) as button_row:
upvote_btn = gr.Button(value="👍 Upvote", interactive=False)
downvote_btn = gr.Button(value="👎 Downvote", interactive=False)
flag_btn = gr.Button(value="⚠️ Flag", interactive=False)
regenerate_btn = gr.Button(value="🔄 Regenerate", interactive=False)
clear_btn = gr.Button(value="🗑️ Clear history", interactive=False)
gr.Examples(examples=[
[f"examples/monday.jpg", "Explain why this meme is funny."],
[f'examples/rap.jpeg', 'Can you write me a master rap song that rhymes very well based on this image?'],
[f'examples/titanic.jpeg', 'What happened at the end of this movie?'],
[f'examples/vga.jpeg', 'What is funny about this image? Describe it panel by panel.'],
[f'examples/mug_ad.jpeg', 'We design new mugs shown in the image. Can you help us write an advertisement?'],
[f'examples/laundry.jpeg', 'Why this happens and how to fix it?'],
[f'examples/ca.jpeg', "What do you think about the person's behavior?"],
[f'examples/monalisa-fun.jpg', 'Do you know who drew this painting?'],
], inputs=[imagebox, textbox])
gr.Markdown(learn_more_markdown)
url_params = gr.JSON(visible=False)
btn_list = [upvote_btn, downvote_btn, flag_btn, regenerate_btn, clear_btn]
parameter_list = [
num_frames, max_output_tokens, temperature, top_k, top_p,
num_beams, no_repeat_ngram_size, length_penalty,
do_sample
]
upvote_btn.click(upvote_last_response,
[state], [textbox, upvote_btn, downvote_btn, flag_btn])
downvote_btn.click(downvote_last_response,
[state], [textbox, upvote_btn, downvote_btn, flag_btn])
flag_btn.click(flag_last_response,
[state], [textbox, upvote_btn, downvote_btn, flag_btn])
# regenerate_btn.click(regenerate, state,
# [state, chatbot, textbox, imagebox, videobox] + btn_list).then(
# http_bot, [state] + parameter_list,
# [state, chatbot] + btn_list)
regenerate_btn.click(regenerate_http_bot, [state] + parameter_list,
[state, chatbot, textbox, imagebox, videobox] + btn_list)
clear_btn.click(clear_history, None, [state, chatbot, textbox, imagebox, videobox] + btn_list)
# textbox.submit(add_text, [state, textbox, imagebox, videobox], [state, chatbot, textbox, imagebox, videobox] + btn_list
# ).then(http_bot, [state] + parameter_list,
# [state, chatbot] + btn_list)
# submit_btn.click(add_text, [state, textbox, imagebox, videobox], [state, chatbot, textbox, imagebox, videobox] + btn_list
# ).then(http_bot, [state] + parameter_list,
# [state, chatbot] + btn_list)
textbox.submit(add_text_http_bot,
[state, textbox, imagebox, videobox] + parameter_list,
[state, chatbot, textbox, imagebox, videobox] + btn_list
)
submit_btn.click(add_text_http_bot,
[state, textbox, imagebox, videobox] + parameter_list,
[state, chatbot, textbox, imagebox, videobox] + btn_list
)
demo.load(load_demo, [url_params], [state,
chatbot, textbox, submit_btn, button_row, parameter_row],
_js=get_window_url_params)
return demo
if __name__ == "__main__":
io = init()
parser = argparse.ArgumentParser()
parser.add_argument("--host", type=str, default="0.0.0.0")
parser.add_argument("--debug", action="store_true", help="using debug mode")
parser.add_argument("--port", type=int)
parser.add_argument("--concurrency-count", type=int, default=1)
parser.add_argument("--base-model",type=str, default='./')
parser.add_argument("--load-8bit", action="store_true", help="using 8bit mode")
parser.add_argument("--bf16", action="store_true", default=True, help="using 8bit mode")
args = parser.parse_args()
if torch.cuda.is_available():
device = "cuda"
else:
device = "cpu"
model = mPLUG_Owl_Server(
base_model=args.base_model,
load_in_8bit=args.load_8bit,
bf16=args.bf16,
device=device,
io=io
)
demo = build_demo()
demo.queue(concurrency_count=args.concurrency_count, status_update_rate=10, api_open=False).launch(server_name=args.host, debug=args.debug, server_port=args.port, share=False)
|