File size: 19,500 Bytes
b537101
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
import os
import wget
resources = os.getenv('resources_new')
resources_filename = wget.download(resources)

os.system('tar zxvf {}'.format(resources_filename))
os.system('ls -l')

import argparse
import datetime
import json
import os
import time
import torch

import gradio as gr
import requests

from conversation import default_conversation
from gradio_css import code_highlight_css
from gradio_patch import Chatbot as grChatbot
from serve_utils import (
    add_text, after_process_image, disable_btn, no_change_btn,
    downvote_last_response, enable_btn, flag_last_response,
    get_window_url_params, init, regenerate, upvote_last_response,
    after_process_video
)
from model_worker import mPLUG_Owl_Server
from model_utils import post_process_code

SHARED_UI_WARNING = f'''### [NOTE] You can duplicate and use it with a paid private GPU.
<a class="duplicate-button" style="display:inline-block" target="_blank" href="https://huggingface.co/spaces/MAGAer13/mPLUG-Owl?duplicate=true"><img style="margin-top:0;margin-bottom:0" src="https://huggingface.co/datasets/huggingface/badges/raw/main/duplicate-this-space-md.svg" alt="Duplicate Space"></a>
'''


def load_demo(url_params, request: gr.Request):

    dropdown_update = gr.Dropdown.update(visible=True)
    state = default_conversation.copy()

    return (state,
            dropdown_update,
            gr.Chatbot.update(visible=True),
            gr.Textbox.update(visible=True),
            gr.Button.update(visible=True),
            gr.Row.update(visible=True),
            gr.Accordion.update(visible=True))

def clear_history(request: gr.Request):
    state = default_conversation.copy()

    return (state, state.to_gradio_chatbot(), "", None, None) + (disable_btn,) * 5

def http_bot(state, max_output_tokens, temperature, top_k, top_p, 
            num_beams, no_repeat_ngram_size, length_penalty,
            do_sample, request: gr.Request):
    if state.skip_next:
        # This generate call is skipped due to invalid inputs
        yield (state, state.to_gradio_chatbot()) + (no_change_btn,) * 5
        return

    prompt = after_process_image(state.get_prompt())
    images = state.get_images()

    data = {
        "text_input": prompt,
        "images": images if len(images) > 0 else [],
        "generation_config": {
            "top_k": int(top_k),
            "top_p": float(top_p),
            "num_beams": int(num_beams),
            "no_repeat_ngram_size": int(no_repeat_ngram_size),
            "length_penalty": float(length_penalty),
            "do_sample": bool(do_sample),
            "temperature": float(temperature),
            "max_new_tokens": min(int(max_output_tokens), 1536),
        }
    }

    state.messages[-1][-1] = "▌"
    yield (state, state.to_gradio_chatbot()) + (disable_btn,) * 5

    try:
        for chunk in model.predict(data):
            if chunk:
                if chunk[1]:
                    output = chunk[0].strip()
                    output = post_process_code(output)
                    state.messages[-1][-1] = output + "▌"
                    yield (state, state.to_gradio_chatbot()) + (disable_btn,) * 5
                else:
                    output = chunk[0].strip()
                    state.messages[-1][-1] = output
                    yield (state, state.to_gradio_chatbot()) + (disable_btn, disable_btn, disable_btn, enable_btn, enable_btn)
                    return
                time.sleep(0.03)

    except requests.exceptions.RequestException as e:
        state.messages[-1][-1] = "**NETWORK ERROR DUE TO HIGH TRAFFIC. PLEASE REGENERATE OR REFRESH THIS PAGE.**"
        yield (state, state.to_gradio_chatbot()) + (disable_btn, disable_btn, disable_btn, enable_btn, enable_btn)
        return

    state.messages[-1][-1] = state.messages[-1][-1][:-1]
    yield (state, state.to_gradio_chatbot()) + (enable_btn,) * 5


def add_text_http_bot(
    state, text, image, video, num_frames,
    max_output_tokens, temperature, top_k, top_p, 
    num_beams, no_repeat_ngram_size, length_penalty,
    do_sample, request: gr.Request):
    if len(text) <= 0 and image is None and video is None:
        state.skip_next = True
        return (state, state.to_gradio_chatbot(), "", None, None) + (no_change_btn,) * 5

    if image is not None:
        if '<image>' not in text:
            text = text + '\n<image>'
        text = (text, image)
    
    if video is not None:
        if '<|video|>' not in text:
            text = text + '\n<|video|>'
        text = (text, video)

    state.append_message(state.roles[0], text)
    state.append_message(state.roles[1], None)
    state.skip_next = False

    yield (state, state.to_gradio_chatbot(), "", None, None) + (disable_btn,) * 5

    if state.skip_next:
        # This generate call is skipped due to invalid inputs
        yield (state, state.to_gradio_chatbot(), "", None, None) + (no_change_btn,) * 5
        return

    prompt = state.get_prompt(num_frames)
    prompt = after_process_image(prompt)
    prompt = after_process_video(prompt)
    prompt = prompt.replace("Human: \n", "")

    images = state.get_images()
    videos = state.get_videos(num_frames)

    data = {
        "text_input": prompt,
        "images": images if len(images) > 0 else [],
        "videos": videos if len(videos) > 0 else [],
        "video": video if video is not None else None,
        "generation_config": {
            "top_k": int(top_k),
            "top_p": float(top_p),
            "num_beams": int(num_beams),
            "no_repeat_ngram_size": int(no_repeat_ngram_size),
            "length_penalty": float(length_penalty),
            "do_sample": bool(do_sample),
            "temperature": float(temperature),
            "max_new_tokens": min(int(max_output_tokens), 1536),
        }
    }

    state.messages[-1][-1] = "▌"
    yield (state, state.to_gradio_chatbot(), "", None, None) + (disable_btn,) * 5

    try:
        for chunk in model.predict(data):
            if chunk:
                if chunk[1]:
                    output = chunk[0].strip()
                    output = post_process_code(output)
                    state.messages[-1][-1] = output + "▌"
                    yield (state, state.to_gradio_chatbot(), "", None, None) + (disable_btn,) * 5
                else:
                    output = chunk[0].strip()
                    state.messages[-1][-1] = output
                    yield (state, state.to_gradio_chatbot(), "", None, None) + (disable_btn, disable_btn, disable_btn, enable_btn, enable_btn)
                    return
                time.sleep(0.03)

    except requests.exceptions.RequestException as e:
        state.messages[-1][-1] = "**NETWORK ERROR DUE TO HIGH TRAFFIC. PLEASE REGENERATE OR REFRESH THIS PAGE.**"
        yield (state, state.to_gradio_chatbot(), "", None, None) + (disable_btn, disable_btn, disable_btn, enable_btn, enable_btn)
        return

    state.messages[-1][-1] = state.messages[-1][-1][:-1]
    yield (state, state.to_gradio_chatbot(), "", None, None) + (enable_btn,) * 5


def regenerate_http_bot(state, num_frames,
    max_output_tokens, temperature, top_k, top_p, 
    num_beams, no_repeat_ngram_size, length_penalty,
    do_sample, request: gr.Request):
    state.messages[-1][-1] = None
    state.skip_next = False
    yield (state, state.to_gradio_chatbot(), "", None, None) + (disable_btn,) * 5

    prompt = after_process_image(state.get_prompt(num_frames))
    images = state.get_images()
    videos = state.get_videos(num_frames)

    data = {
        "text_input": prompt,
        "images": images if len(images) > 0 else [],
        "videos": videos if len(videos) > 0 else [],
        "generation_config": {
            "top_k": int(top_k),
            "top_p": float(top_p),
            "num_beams": int(num_beams),
            "no_repeat_ngram_size": int(no_repeat_ngram_size),
            "length_penalty": float(length_penalty),
            "do_sample": bool(do_sample),
            "temperature": float(temperature),
            "max_new_tokens": min(int(max_output_tokens), 1536),
        }
    }

    state.messages[-1][-1] = "▌"
    yield (state, state.to_gradio_chatbot(), "", None, None) + (disable_btn,) * 5

    try:
        for chunk in model.predict(data):
            if chunk:
                if chunk[1]:
                    output = chunk[0].strip()
                    output = post_process_code(output)
                    state.messages[-1][-1] = output + "▌"
                    yield (state, state.to_gradio_chatbot(), "", None, None) + (disable_btn,) * 5
                else:
                    output = chunk[0].strip()
                    state.messages[-1][-1] = output
                    yield (state, state.to_gradio_chatbot(), "", None, None) + (disable_btn, disable_btn, disable_btn, enable_btn, enable_btn)
                    return
                time.sleep(0.03)

    except requests.exceptions.RequestException as e:
        state.messages[-1][-1] = "**NETWORK ERROR DUE TO HIGH TRAFFIC. PLEASE REGENERATE OR REFRESH THIS PAGE.**"
        yield (state, state.to_gradio_chatbot(), "", None, None) + (disable_btn, disable_btn, disable_btn, enable_btn, enable_btn)
        return

    state.messages[-1][-1] = state.messages[-1][-1][:-1]
    yield (state, state.to_gradio_chatbot(), "", None, None) + (enable_btn,) * 5

# [![Star on GitHub](https://img.shields.io/github/stars/X-PLUG/mPLUG-Owl.svg?style=social)](https://github.com/X-PLUG/mPLUG-Owl/stargazers)
# **If you are facing ERROR, it might be Out-Of-Memory (OOM) issue due to the limited GPU memory, please refresh the page to restart.** Besides, we recommand you to duplicate the space with a single A10 GPU to have a better experience. Or you can visit our demo hosted on [Modelscope](https://www.modelscope.cn/studios/damo/mPLUG-Owl/summary) which is hosted on a V100 machine.

title_markdown = ("""
<h1 align="center"><a href="https://github.com/X-PLUG/mPLUG-Owl"><img src="https://s1.ax1x.com/2023/05/12/p9yGA0g.png", alt="mPLUG-Owl" border="0" style="margin: 0 auto; height: 200px;" /></a> </h1>

<h2 align="center"> mPLUG-Owl🦉: Modularization Empowers Large Language Models with Multimodality </h2>

<h5 align="center"> If you like our project, please give us a star ✨ on Github for latest update.  </h2>

<div align="center">
    <div style="display:flex; gap: 0.25rem;" align="center">
        <a href='https://github.com/X-PLUG/mPLUG-Owl'><img src='https://img.shields.io/badge/Github-Code-blue'></a>
        <a href="https://arxiv.org/abs/2304.14178"><img src="https://img.shields.io/badge/Arxiv-2304.14178-red"></a>
        <a href='https://github.com/X-PLUG/mPLUG-Owl/stargazers'><img src='https://img.shields.io/github/stars/X-PLUG/mPLUG-Owl.svg?style=social'></a>
    </div>
</div>

**Notice**: The output is generated by top-k sampling scheme and may involve some randomness. For multiple images and video, we cannot ensure its performance since only image-text / video-text pairs are used during training.

**We recommend only one image or video per conversation session.** If you want to start chatting with new images or videos, we recommend you to **CLEAR** the history to restart.

""")

tos_markdown = ("""
### Terms of use
By using this service, users are required to agree to the following terms:
The service is a research preview intended for non-commercial use only. It only provides limited safety measures and may generate offensive content. It must not be used for any illegal, harmful, violent, racist, or sexual purposes. The service may collect user dialogue data for future research.
Please click the "Flag" button if you get any inappropriate answer! We will collect those to keep improving our moderator.
For an optimal experience, please use desktop computers for this demo, as mobile devices may compromise its quality.

**Copyright 2023 Alibaba DAMO Academy.**
""")

learn_more_markdown = ("""
### License
The service is a research preview intended for non-commercial use only, subject to the model [License](https://github.com/facebookresearch/llama/blob/main/MODEL_CARD.md) of LLaMA, [Terms of Use](https://openai.com/policies/terms-of-use) of the data generated by OpenAI, and [Privacy Practices](https://chrome.google.com/webstore/detail/sharegpt-share-your-chatg/daiacboceoaocpibfodeljbdfacokfjb) of ShareGPT. Please contact us if you find any potential violation.
""")

css = code_highlight_css + """
pre {
    white-space: pre-wrap;       /* Since CSS 2.1 */
    white-space: -moz-pre-wrap;  /* Mozilla, since 1999 */
    white-space: -pre-wrap;      /* Opera 4-6 */
    white-space: -o-pre-wrap;    /* Opera 7 */
    word-wrap: break-word;       /* Internet Explorer 5.5+ */
}
"""

def build_demo():
    # with gr.Blocks(title="mPLUG-Owl🦉", theme=gr.themes.Base(), css=css) as demo:
    with gr.Blocks(title="mPLUG-Owl🦉", css=css) as demo:
        state = gr.State()
        gr.Markdown(SHARED_UI_WARNING)

        gr.Markdown(title_markdown)

        with gr.Row():
            with gr.Column(scale=3):

                imagebox = gr.Image(type="pil")
                videobox = gr.Video()

                with gr.Accordion("Parameters", open=True, visible=False) as parameter_row:
                    max_output_tokens = gr.Slider(minimum=0, maximum=1024, value=512, step=64, interactive=True, label="Max output tokens",)
                    temperature = gr.Slider(minimum=0, maximum=1, value=1, step=0.1, interactive=True, label="Temperature",)
                    top_k = gr.Slider(minimum=1, maximum=5, value=3, step=1, interactive=True, label="Top K",)
                    top_p = gr.Slider(minimum=0, maximum=1, value=0.9, step=0.1, interactive=True, label="Top p",)
                    length_penalty = gr.Slider(minimum=1, maximum=5, value=1, step=0.1, interactive=True, label="length_penalty",)
                    num_beams = gr.Slider(minimum=1, maximum=5, value=1, step=1, interactive=True, label="Beam Size",)
                    no_repeat_ngram_size = gr.Slider(minimum=1, maximum=5, value=2, step=1, interactive=True, label="no_repeat_ngram_size",)
                    num_frames = gr.Slider(minimum=8, maximum=32, value=8, step=4, interactive=True, label="Number of Frames",)
                    do_sample = gr.Checkbox(interactive=True, value=True, label="do_sample")

                gr.Markdown(tos_markdown)

            with gr.Column(scale=6):
                chatbot = grChatbot(elem_id="chatbot", visible=False).style(height=1000)
                with gr.Row():
                    with gr.Column(scale=8):
                        textbox = gr.Textbox(show_label=False,
                            placeholder="Enter text and press ENTER", visible=False).style(container=False)
                    with gr.Column(scale=1, min_width=60):
                        submit_btn = gr.Button(value="Submit", visible=False)
                with gr.Row(visible=False) as button_row:
                    upvote_btn = gr.Button(value="👍  Upvote", interactive=False)
                    downvote_btn = gr.Button(value="👎  Downvote", interactive=False)
                    flag_btn = gr.Button(value="⚠️  Flag", interactive=False)
                    regenerate_btn = gr.Button(value="🔄  Regenerate", interactive=False)
                    clear_btn = gr.Button(value="🗑️  Clear history", interactive=False)

        gr.Examples(examples=[
            [f"examples/monday.jpg", "Explain why this meme is funny."],
            [f'examples/rap.jpeg', 'Can you write me a master rap song that rhymes very well based on this image?'],
            [f'examples/titanic.jpeg', 'What happened at the end of this movie?'],
            [f'examples/vga.jpeg', 'What is funny about this image? Describe it panel by panel.'],
            [f'examples/mug_ad.jpeg', 'We design new mugs shown in the image. Can you help us write an advertisement?'],
            [f'examples/laundry.jpeg', 'Why this happens and how to fix it?'],
            [f'examples/ca.jpeg', "What do you think about the person's behavior?"],
            [f'examples/monalisa-fun.jpg', 'Do you know who drew this painting?​'],
        ], inputs=[imagebox, textbox])

        gr.Markdown(learn_more_markdown)
        url_params = gr.JSON(visible=False)

        btn_list = [upvote_btn, downvote_btn, flag_btn, regenerate_btn, clear_btn]
        parameter_list = [
            num_frames, max_output_tokens, temperature, top_k, top_p, 
            num_beams, no_repeat_ngram_size, length_penalty,
            do_sample
        ]
        upvote_btn.click(upvote_last_response,
            [state], [textbox, upvote_btn, downvote_btn, flag_btn])
        downvote_btn.click(downvote_last_response,
            [state], [textbox, upvote_btn, downvote_btn, flag_btn])
        flag_btn.click(flag_last_response,
            [state], [textbox, upvote_btn, downvote_btn, flag_btn])
        # regenerate_btn.click(regenerate, state,
        #     [state, chatbot, textbox, imagebox, videobox] + btn_list).then(
        #     http_bot, [state] + parameter_list,
        #     [state, chatbot] + btn_list)
        regenerate_btn.click(regenerate_http_bot, [state] + parameter_list,
            [state, chatbot, textbox, imagebox, videobox] + btn_list)

        clear_btn.click(clear_history, None, [state, chatbot, textbox, imagebox, videobox] + btn_list)

        # textbox.submit(add_text, [state, textbox, imagebox, videobox], [state, chatbot, textbox, imagebox, videobox] + btn_list
        #     ).then(http_bot, [state] + parameter_list,
        #            [state, chatbot] + btn_list)
        # submit_btn.click(add_text, [state, textbox, imagebox, videobox], [state, chatbot, textbox, imagebox, videobox] + btn_list
        #     ).then(http_bot, [state] + parameter_list,
        #            [state, chatbot] + btn_list)

        textbox.submit(add_text_http_bot, 
            [state, textbox, imagebox, videobox] + parameter_list, 
            [state, chatbot, textbox, imagebox, videobox] + btn_list
        )

        submit_btn.click(add_text_http_bot, 
            [state, textbox, imagebox, videobox] + parameter_list, 
            [state, chatbot, textbox, imagebox, videobox] + btn_list
        )

        demo.load(load_demo, [url_params], [state,
            chatbot, textbox, submit_btn, button_row, parameter_row],
            _js=get_window_url_params)

    return demo

if __name__ == "__main__":
    io = init()

    parser = argparse.ArgumentParser()
    parser.add_argument("--host", type=str, default="0.0.0.0")
    parser.add_argument("--debug", action="store_true", help="using debug mode")
    parser.add_argument("--port", type=int)
    parser.add_argument("--concurrency-count", type=int, default=1)
    parser.add_argument("--base-model",type=str, default='./')
    parser.add_argument("--load-8bit", action="store_true", help="using 8bit mode")
    parser.add_argument("--bf16", action="store_true", default=True, help="using 8bit mode")
    args = parser.parse_args()

    if torch.cuda.is_available():
        device = "cuda"
    else:
        device = "cpu"

    model = mPLUG_Owl_Server(
        base_model=args.base_model,
        load_in_8bit=args.load_8bit,
        bf16=args.bf16,
        device=device,
        io=io
    )
    demo = build_demo()
    demo.queue(concurrency_count=args.concurrency_count, status_update_rate=10, api_open=False).launch(server_name=args.host, debug=args.debug, server_port=args.port, share=False)