File size: 5,782 Bytes
e56055d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
import torch
import torch.nn.functional as F
from metrics import es_sentiment
from utils import gather_log_probs, mask_hf_labels, masked_mean


def balanced_bce(log_probs, labels, eps=torch.finfo(torch.float32).eps):
    assert labels.max() <= 1
    assert labels.min() >= 0

    pos_losses = -log_probs[labels == 1]
    neg_probs = 1 - log_probs.exp()
    neg_probs[neg_probs == 0] += eps  # for numerical stability
    neg_losses = -neg_probs.log()[labels == 0]
    pos_loss = pos_losses.mean() if pos_losses.numel() > 0 else 0
    neg_loss = neg_losses.mean() if neg_losses.numel() > 0 else 0

    return pos_loss + neg_loss


def kl_loc_loss(pre, post, mask=None):
    pre = pre.to(torch.float32)
    post = post.to(torch.float32)

    sequence = pre.dim() == 3
    pre_ = pre.view(-1, pre.shape[-1])
    post_ = post.view(pre_.shape)
    assert pre_.shape[0] == post_.shape[0]

    if not sequence:
        if pre_.shape[-1] == 1:  # No masking needed for binary classification
            return (pre.sigmoid() * (F.logsigmoid(pre) - F.logsigmoid(post))).mean() + (
                (-pre).sigmoid() * (F.logsigmoid(-pre) - F.logsigmoid(-post))
            ).mean()
    else:  # We have sequences of predictions; masking needed
        if pre_.shape[-1] > 1:
            assert mask is not None
            mask_ = mask.view(pre_.shape[0])
            kl = (pre_.softmax(-1) * (pre_.log_softmax(-1) - post_.log_softmax(-1))).sum(-1)
            return (kl * mask_).sum() / mask_.sum()

    raise NotImplementedError


def binary_log_probs(pred, targ, should_reduce=True):
    assert targ.max() <= 1
    assert targ.min() >= 0
    neg_mask = torch.ones_like(pred)
    neg_mask[targ == 0] *= -1
    pred = pred * neg_mask
    log_probs = F.logsigmoid(pred)
    acc = (log_probs.exp() > 0.5).float()
    if should_reduce:
        acc = acc.mean()
    return {
        "acc": acc,
        "log_prob": log_probs.mean(),
        "prob": log_probs.exp().mean(),
        "nll": -log_probs.mean(),
        "n_tokens": log_probs.shape[0]
    }


def multiclass_log_probs(
    pred,
    raw_targets,
    shift=True,
    eps=torch.finfo(torch.float32).eps,
    should_reduce=True,
    **kwargs,
):
    NULL_TOKEN = 0  # a placeholder used for masked target locations

    pred = pred.clone()
    mask, targ = mask_hf_labels(raw_targets)
    if shift and pred.dim() == 3:  # Dealing with sequences
        pred = pred[:, :-1]  # Remove last prediction in sequence
        targ = targ[:, 1:]  # Shift to align predictions and targets

    unmasked_log_probs = gather_log_probs(pred, targ)

    pred_ids = pred.argmax(-1).masked_fill(~mask, NULL_TOKEN)
    correct = pred_ids == targ
    if pred.dim() == 3:
        correct = (pred_ids == targ).all(-1)  # We want to get the whole sequence right
    acc = correct.float()
    if should_reduce:
        acc = acc.mean()

    if "inner_sent" in kwargs:
        # Only use outer samples with the same sentiment as the inner sample
        same_sent_mask = torch.tensor([i == o for i, o in zip(kwargs["inner_sent"], kwargs["outer_sent"])], device=pred.device)
        good_mask = mask * same_sent_mask.unsqueeze(-1)
        bad_mask = mask * (~same_sent_mask.unsqueeze(-1))

        good_log_prob = masked_mean(unmasked_log_probs, good_mask)
        bad_log_prob = masked_mean((1 - unmasked_log_probs.exp() + eps).log(), bad_mask)

        n_tokens = good_mask.float().sum()
        avg_log_prob = good_log_prob

        if kwargs["unlikelihood"]:
            nll = -good_log_prob - bad_log_prob
        else:
            nll = -good_log_prob
    else:
        n_tokens = mask.float().sum()
        avg_log_prob = (unmasked_log_probs * mask.float()).sum() / n_tokens
        nll = -avg_log_prob

    info_dict = {
        "acc": acc,
        "log_prob": avg_log_prob,
        "prob": avg_log_prob.exp(),
        "n_tokens": n_tokens,
        "nll": nll
    }

    if "inner_sent" in kwargs:
        info_dict.update(es_sentiment(kwargs["pre_edit_logits"],
                                      kwargs["post_edit_logits"],
                                      raw_targets,
                                      same_sent_mask))

    return info_dict


def masked_log_probs(pred, targ, shift=True, **kwargs):
    pred = pred.to(torch.float32)

    if not (pred.dim() == 2 or pred.dim() == 3):
        raise RuntimeError(f"Expected pred to have 2 or 3 dimensions, got {pred.shape}")

    if pred.shape[-1] == 1:
        should_reduce = True
        if "should_reduce" in kwargs:
            should_reduce = kwargs["should_reduce"]
        return binary_log_probs(pred, targ, should_reduce=should_reduce)
    else:
        return multiclass_log_probs(pred, targ, shift=shift, **kwargs)


def test_masked_log_probs():
    print()
    N = 10000
    pred = torch.randn(10, 15, N)
    targ = torch.randint(0, N, (10, 15))
    true_pred = pred.clone()
    true_pred.scatter_(2, targ.unsqueeze(-1), 5)
    true_pred = true_pred.roll(-1, 1)

    half_pred = true_pred.clone()
    mask = torch.arange(10) % 2 == 0
    half_pred[mask] = pred[mask]

    pred_ = pred.clone()
    true_pred_ = true_pred.clone()
    half_pred_ = half_pred.clone()
    targ_ = targ.clone()

    print(masked_log_probs(pred, targ, return_acc=True))
    print(masked_log_probs(true_pred, targ, return_acc=True))
    print(masked_log_probs(half_pred, targ, return_acc=True))

    assert (pred == pred_).all()
    assert (targ == targ_).all()
    assert (half_pred == half_pred_).all()
    assert (true_pred == true_pred_).all()

    import pdb; pdb.set_trace()

    pred = torch.randn(1000, 15, 1)
    targ = torch.randint(0, 2, (1000, 15))

    print(masked_log_probs(pred, targ, return_acc=True))


if __name__ == "__main__":
    torch.manual_seed(0)

    test_masked_log_probs()