File size: 22,141 Bytes
e56055d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
import torch
import copy
import transformers
import logging

from utils import scr, set_dropout, _logits, add_padding, add_sep
from editable_model import EditableModel
from models import BertClassifier

LOG = logging.getLogger(__name__)


def translate_tokens(tokens, from_tok, to_tok):
    tokens = tokens.masked_fill(tokens == -100, from_tok.pad_token_id)
    text = from_tok.batch_decode(tokens, skip_special_tokens=True)
    return to_tok(text, return_tensors="pt")["input_ids"].to(tokens.device)


class SERAC(EditableModel):
    def __init__(self, model, config, model_constructor, classifier=None, classifier_tok=None,
                 replacement=None, replacement_tok=None, cache_inputs=None, cache_labels=None,
                 cache_embeds=None, scale=None):
        super().__init__(model, config, model_constructor)

        if classifier is None:
            if config.rep.cross_attend and not config.rep.cls_class.endswith("ForSequenceClassification"):
                LOG.warn(f"Switching {config.rep.cls_class} to {config.rep.cls_class}ForSequenceClassification for cross-attend")
                config.rep.cls_class += "ForSequenceClassification"
            self.classifier = getattr(transformers, config.rep.cls_class).from_pretrained(config.rep.cls_name, cache_dir=scr())
            if self.config.rep.checkpoint_grad:
                LOG.info(f"Checking for checkpointing: {hasattr(self.classifier.config, 'gradient_checkpointing')}")
                self.classifier.config.gradient_checkpointing = True
            self.classifier_tok = transformers.AutoTokenizer.from_pretrained(config.rep.cls_name, cache_dir=scr())
            if not self.config.rep.cross_attend and 'bert' in self.config.rep.cls_name:
                self.classifier.pooler = None  # we don't need the classification head
            elif not self.config.rep.cross_attend and "mpnet" not in self.config.rep.cls_name:
                if hasattr(self.classifier, "pooler"):
                    self.classifier.pooler = None  # we don't need the classification head

            set_dropout(self.classifier, config.dropout)
            if self.config.rep.lora is not None:
                self.classifier = LoraModel(self.classifier, self.config.rep.lora)
        else:
            assert isinstance(classifier, torch.nn.Module), f"Classifier is a {type(classifier)}!"
            assert isinstance(classifier_tok, transformers.PreTrainedTokenizerBase), f"Classifier tok is {type(classifier_tok)}!"
            self.classifier, self.classifier_tok = classifier, classifier_tok

        if replacement is None:
            # self.replacement_tok = getattr(transformers, config.model.tokenizer_class).from_pretrained(config.model.tokenizer_name,
            #                                                                                            cache_dir=scr())
            self.replacement_tok = transformers.AutoTokenizer.from_pretrained(config.model.small_name, cache_dir=scr())
            # if self.replacement_tok.sep_token is None:
            #     self.replacement_tok.sep_token = self.replacement_tok.eos_token
            if (False and self.config.rep.freeze_cntr):
                self.replacement = None
            else:
                if config.model.class_name == "BertClassifier":
                    self.replacement = BertClassifier(config.model.small_name)
                else:
                    self.replacement = getattr(transformers, config.model.class_name).from_pretrained(config.model.small_name, cache_dir=scr())
                if self.replacement_tok.sep_token is None and "gpt" not in self.model.name_or_path.lower():
                    add_sep(self.replacement_tok, self.replacement)
                if self.replacement_tok.pad_token is None:
                    add_padding(self.replacement_tok, self.replacement)
                set_dropout(self.replacement, config.dropout)
        else:
            assert isinstance(replacement, torch.nn.Module), "Rep is {type(replacement)}!"
            assert isinstance(replacement_tok, transformers.PreTrainedTokenizerBase), "Rep tok is {type(replacement_tok)}!"
            self.replacement, self.replacement_tok = replacement, replacement_tok

        if self.config.rep.cross_attend:
            self.scale = None
        else:
            if scale is None:
                self.register_buffer("scale", torch.tensor(1.0))
                # self.scale = nn.Parameter(torch.tensor(1.0))
            else:
                self.scale = scale

        if cache_inputs is None:
            self.cache_inputs = []
            self.cache_labels = []
            if config.rep.cache_embeds and not config.rep.cross_attend:
                self.cache_embeds = {}
        else:
            assert isinstance(cache_inputs, list), f"Cache inputs is {cache_inputs}"
            assert isinstance(cache_labels, list), f"Cache labels is {cache_labels}"
            self.cache_inputs = copy.deepcopy(cache_inputs)
            self.cache_labels = copy.deepcopy(cache_labels)
            if config.rep.cache_embeds and not config.rep.cross_attend:
                assert isinstance(cache_embeds, dict), f"Cache embeds is {cache_embeds}"
                self.cache_embeds = copy.deepcopy(cache_embeds)

    def state_dict(self, destination=None, prefix="", keep_vars=False):
        state_dict = super().state_dict(prefix=prefix, keep_vars=keep_vars)  # Get default state dict
        model_keys = self.model.state_dict(prefix=prefix, keep_vars=keep_vars).keys()  # Remove model params
        for k in model_keys:
            del state_dict[f"model.{k}"]
        if self.config.rep.freeze_cntr:
            cntr_keys = self.replacement.state_dict().keys()
            for k in cntr_keys:
                del state_dict[f"replacement.{k}"]
        state_dict["model_config"] = self.model.config  # Include model config
        return state_dict

    def load_state_dict(self, state_dict, strict: bool = True):
        config = state_dict["model_config"]
        del state_dict["model_config"]
        if config != self.model.config:
            LOG.info("Loaded model config doesn't match current model config.")
            LOG.info(f"Loaded: {config}")
            LOG.info(f"Current: {self.model.config}")

        if (False and self.config.rep.freeze_cntr):
            rep_keys = list(state_dict.keys())
            for k in rep_keys:
                if k.startswith("replacement"):
                    del state_dict[k]
            res = super().load_state_dict(state_dict, False)
        else:
            try:
                res = super().load_state_dict(state_dict, False)
            except RuntimeError:
                LOG.info("Load failed; trying again without loading counterfactual model weights.")
                rep_keys = list(state_dict.keys())
                for k in rep_keys:
                    if k.startswith("replacement"):
                        del state_dict[k]
                res = super().load_state_dict(state_dict, False)

        # We should only have missing keys for the model, and no unexpected keys
        def ok_to_miss(k):
            return k.startswith("model.") or ((False and self.config.rep.freeze_cntr) and k.startswith("replacement."))
        missing_keys = [k for k in res.missing_keys if not ok_to_miss(k)]
        assert len(missing_keys) == 0, f"Should only have missing keys for model: {missing_keys}."
        assert len(res.unexpected_keys) == 0, "Shouldn't have any unexpected keys"
        return res

    def outer_parameters(self, grouped=False):
        if self.config.rep.freeze is not None:
            modlist = None
            for m in self.classifier.modules():
                if isinstance(m, torch.nn.ModuleList):
                    modlist = m
                    break
            model_params = list(modlist[-self.config.rep.freeze:].parameters())
        else:
            model_params = list(self.classifier.parameters())

        if self.config.rep.lora is not None or self.config.rep.freeze is not None:
            cls = self.classifier.base_model if self.config.rep.lora else self.classifier
            if hasattr(cls, "classifier"):
                model_params.extend(cls.classifier.parameters())
            if hasattr(cls, "pre_classifier"):
                model_params.extend(cls.pre_classifier.parameters())

        if not (False and self.config.rep.freeze_cntr):
            model_params.extend(list(self.replacement.parameters()))

        extra_params = []
        if grouped:
            return [
                dict(params=model_params, lr=self.config.lr),
                dict(params=extra_params, lr=self.config.lr_lr)
            ]
        else:
            return model_params + extra_params

    def edit(self, batch, condition=None, detach_history=False):
        def detokenize(toks, tok):
            tokens = toks.masked_fill(toks == -100, tok.pad_token_id)
            return tok.batch_decode(tokens, skip_special_tokens=True)

        inputs = detokenize(batch["input_ids"], self.replacement_tok)
        if "bert" in self.config.model.name:
            labels = ["" for _ in batch["labels"]]
        else:
            labels = detokenize(batch["labels"], self.replacement_tok)

        cache_inputs = self.cache_inputs + inputs
        cache_labels = self.cache_labels + labels

        if self.config.rep.cache_embeds and not self.config.rep.cross_attend:
            cls_inputs = self.build_cls_cache_inputs(inputs, labels)
            with torch.no_grad():
                embeds = self.compute_cls_embeddings(cls_inputs)

            cache_embeds = {inp: emb for inp, emb in zip(cls_inputs, embeds)}
            cache_embeds.update(self.cache_embeds)
        else:
            cache_embeds = None

        new_model = SERAC(self.model, self.config, self.model_constructor, self.classifier, self.classifier_tok,
                        self.replacement, self.replacement_tok, cache_inputs, cache_labels, cache_embeds, self.scale)
        new_model.train(self.training)
        return new_model, {}

    def stats(self):
        return self.last_stats

    def compute_cls_embeddings(self, text):
        inputs = self.classifier_tok(text, return_tensors="pt", padding=True).to(self.config.device)
        if 'bert' in self.config.rep.cls_name:
            embeds = self.classifier(**inputs).last_hidden_state[:, 0].unsqueeze(1)
        else:
            embeds = self.classifier(**inputs).pooler_output.unsqueeze(1)
        embeds = embeds.view(embeds.shape[0], self.config.rep.dist_heads, -1)
        if self.config.rep.bound_embeds:
            embeds = embeds.tanh()
        return embeds

    def embedding_logsim_matrix(self, cls_ctxs, test_input_text):
        if self.config.rep.cache_embeds and not self.config.rep.cross_attend and not self.training:
            ctx_embeds = torch.cat([self.cache_embeds[ctx] for ctx in cls_ctxs])
        else:
            ctx_embeds = self.compute_cls_embeddings(cls_ctxs)
        main_embeds = self.compute_cls_embeddings(test_input_text)

        if self.config.rep.cos:
            cos = (ctx_embeds[None] * main_embeds[:, None]).sum(-1) / (ctx_embeds[None].norm(2, -1) * main_embeds[:, None].norm(2, -1))
            dists = 1 - cos
        else:
            dists = (ctx_embeds[None] - main_embeds[:, None]).norm(2, -1)
            if self.config.rep.square:
                dists = dists ** 2

        dists = dists.min(-1).values  # get rid of the dists head dimension

        assert dists.min() >= 0, "Shouldn't have negative distances!"
        cls_logsims = -dists * self.scale

        return cls_logsims

    def crossattend_logsim_matrix(self, cls_ctxs, test_input_texts):
        batch = [ctx + self.classifier_tok.sep_token + test for test in test_input_texts for ctx in cls_ctxs]
        batch_toks = self.classifier_tok(batch, return_tensors="pt", padding=True).to(self.config.device)
        batch_logsims = self.classifier(**batch_toks).logits.log_softmax(-1)[:, 0]
        logsim_matrix = batch_logsims.view(len(test_input_texts), len(cls_ctxs))

        return logsim_matrix

    def build_rep_cache_contexts(self):
        sep = " "
        if hasattr(self.model, "name_or_path") and "gpt" in self.model.name_or_path.lower():
            # The labels are include in the inputs for autoregressive models. Cut off the label for the classifier
            ctxs = [cin + sep for cin in self.cache_inputs]
        else:
            ctxs = [cin + sep + clab + sep for cin, clab in zip(self.cache_inputs, self.cache_labels)]
        return ctxs

    def build_cls_cache_inputs(self, cache_inputs=None, cache_labels=None):
        sep = self.classifier_tok.sep_token
        if cache_inputs is None:
            cache_inputs = self.cache_inputs
        if cache_labels is None:
            cache_labels = self.cache_labels

        if hasattr(self.model, "name_or_path") and "gpt" in self.model.name_or_path.lower():
            # The labels are include in the inputs for autoregressive models. Cut off the label for the classifier
            inputs = [cin.rsplit(" ", 1)[0] + sep for cin in cache_inputs]
        else:
            inputs = [cin + sep + clab + sep for cin, clab in zip(cache_inputs, cache_labels)]
        return inputs

    def build_rep_input_tokens(self, kwargs, idxs, generation=False):
        assert len(idxs) == len(kwargs["input_ids"]), "Need one cache idx for each test input"
        cache_contexts = self.build_rep_cache_contexts()
        selected_contexts = [cache_contexts[idx.item()] for idx in idxs]
        test_inputs = self.replacement_tok.batch_decode(kwargs["input_ids"], skip_special_tokens=True)
        rep_texts = [ctx + inp for ctx, inp in zip(selected_contexts, test_inputs)]
        rep_input_tokens = self.replacement_tok(rep_texts, return_tensors="pt", padding=True).to(self.config.device)

        rep_kwargs = {
            "input_ids": rep_input_tokens["input_ids"],
            "attention_mask": rep_input_tokens["attention_mask"],
        }

        if not generation:
            rep_kwargs["labels"] = kwargs["labels"]

        # if self.config.task in ["fc", "fnli"]:
        #     del rep_kwargs["labels"]

        if hasattr(self.model, "name_or_path") and "gpt" in self.model.name_or_path.lower():
            # Add 'ignore' labels for the prepended cache inputs
            pre = torch.full((kwargs["labels"].shape[0], rep_kwargs["input_ids"].shape[-1] - kwargs["labels"].shape[-1]), -100,
                             device=kwargs["labels"].device)
            rep_kwargs["labels"] = torch.cat((pre, kwargs["labels"]), dim=-1)

        return rep_kwargs

    def run_classifier(self, *inputs, **kwargs):
        cache_inputs = self.build_cls_cache_inputs()
        test_inputs = self.replacement_tok.batch_decode(kwargs["input_ids"], skip_special_tokens=True)

        if self.config.rep.cross_attend:
            log_sim_matrix = self.crossattend_logsim_matrix(cache_inputs, test_inputs)
        else:
            log_sim_matrix = self.embedding_logsim_matrix(cache_inputs, test_inputs)

        sims = log_sim_matrix.exp()
        assert sims.max() <= 1, "Similarities shouldn't exceed 1!"

        cls_sims, cls_idxs = sims.max(-1)
        return cls_sims, cls_idxs, log_sim_matrix

    def generate(self, *args, **kwargs):
        # input_text = self.replacement_tok.batch_decode(kwargs["input_ids"], skip_special_tokens=True)
        base_generate_fn = (
            self.model.forward if type(self.model) == BertClassifier 
            else lambda *args, **kwargs: self.model.generate(*args, **kwargs, max_new_tokens=20)
        )
        cntr_generate_fn = (
            self.replacement.forward if type(self.replacement) == BertClassifier
            else lambda *args, **kwargs: self.replacement.generate(*args, **kwargs, max_new_tokens=20)
        )

        # assert len(args) == 0, "Should only pass named arguments to generate()"
        if len(self.cache_inputs) > 0:
            override = kwargs.get("override")
            if override:
                del kwargs["override"]

            cls_sims, cls_idxs, _ = self.run_classifier(*args, **kwargs)
            # assert cls_sims.numel() == 1
            # print(f"Cache score: {cls_sims.item()} " + ("[MISS]" if cls_sims.item() < 0.5 else "[HIT]"))
            use_cntr = (override == "cntr") if override is not None else (cls_sims.item() > 0.5)
            if use_cntr:
                rep_input = self.build_rep_input_tokens(kwargs, cls_idxs, generation=True)
                kwargs["input_ids"] = rep_input["input_ids"]
                kwargs["attention_mask"] = rep_input["attention_mask"]
                # rep_input_text = self.replacement_tok.decode(rep_input["input_ids"][0])
                # print(f"Returning counterfactual model output for '{rep_input_text}'")
                if self.config.rep.freeze_cntr:
                    return base_generate_fn(*args, **kwargs)
                else:
                    return cntr_generate_fn(*args, **kwargs)

        # print(f"Returning base model output for '{input_text}'")
        return base_generate_fn(*args, **kwargs)

    def forward(self, *inputs, return_logits_only=True, eps=torch.finfo(torch.float32).eps, pos_pairs=None, **kwargs):
        grad_enabled = torch.is_grad_enabled()
        torch.set_grad_enabled(self.training)

        # need to do soft mixing of logits if we're doing supervised training or we've specifically requested it
        soft = (not self.config.rep.supervised) or self.config.rep.soft_weighting
        with torch.no_grad():
            if len(self.cache_inputs) == 0:
                super_out = super().forward(*inputs, **kwargs).float()
                torch.set_grad_enabled(grad_enabled)
                return super_out
            else:
                base_logits = super().forward(*inputs, **kwargs).float()
                if soft:
                    if base_logits.dim() == 3:
                        base_probs = base_logits.softmax(-1)
                    else:
                        base_probs = base_logits.sigmoid()
                    del base_logits

        cls_sims, cls_idxs, cls_logits = self.run_classifier(*inputs, **kwargs)
        rep_cls_inputs = self.build_rep_input_tokens(kwargs, cls_idxs)
        if self.config.rep.freeze_cntr:
            rep_cls_logits = _logits(super().forward(**rep_cls_inputs))
        else:
            rep_cls_logits = _logits(self.replacement(**rep_cls_inputs))

        if pos_pairs is not None:
            assert (pos_pairs[:, 0] == torch.arange(pos_pairs.shape[0], device=pos_pairs.device)).all()
            gold_idxs = pos_pairs[:, 1]
            # print("IDX acc:", (cls_idxs == gold_idxs).shape, (cls_idxs == gold_idxs).float().mean())
            rep_gold_inputs = self.build_rep_input_tokens(kwargs, gold_idxs)
            if (False and self.config.rep.freeze_cntr):
                rep_gold_logits = _logits(super().forward(**rep_gold_inputs))
            else:
                rep_gold_logits = _logits(self.replacement(**rep_gold_inputs))
        else:
            rep_gold_logits = rep_cls_logits

        cls_sims = cls_sims.view(-1, 1)  # For (binary) classification, predictions are (B x 1)
        if rep_cls_logits.dim() == 3:
            cls_sims.unsqueeze_(-1)  # For generation/seq2seq, predictions are (B x S x V)

        stats = {
            'sims/mean': cls_sims.mean().item(),
            'sims/pos': (cls_sims >= 0.5).float().mean().item(),
            'sims/neg': (cls_sims < 0.5).float().mean().item(),
            'params/scale': self.scale.item() if self.scale is not None else 0.0,
        }

        if hasattr(self.model, "name_or_path") and "gpt" in self.model.name_or_path.lower():
            rep_cls_logits = rep_cls_logits[:, -kwargs["labels"].shape[-1]:, :]

        if soft:
            rep_weight = cls_sims
            if base_probs.dim() == 3:
                mixture_logits = ((1 - rep_weight) * base_probs + rep_weight * rep_cls_logits.softmax(-1) + eps).log()
            else:
                mixture_logits = ((1 - rep_weight) * base_probs + rep_weight * rep_cls_logits.sigmoid() + eps).log()
        else:
            rep_idxs = torch.where(cls_sims > 0.5)[0]
            mixture_logits = base_logits
            if rep_idxs.numel() > 0:
                mixture_logits[rep_idxs] = rep_cls_logits[rep_idxs]

        torch.set_grad_enabled(grad_enabled)
        if return_logits_only:
            return mixture_logits
        else:
            return mixture_logits, cls_logits, rep_gold_logits, stats


if __name__ == '__main__':
    import types

    model = transformers.GPT2LMHeadModel.from_pretrained("gpt2")

    config = types.SimpleNamespace()
    config.model.inner_params = [
        "transformer.h.9.mlp.c_fc.weight",
        "transformer.h.9.mlp.c_proj.weight",
        "transformer.h.10.mlp.c_fc.weight",
        "transformer.h.10.mlp.c_proj.weight",
        "transformer.h.11.mlp.c_fc.weight",
        "transformer.h.11.mlp.c_proj.weight",
    ]
    config.edit_lr = 0.0001

    config.gtn = types.SimpleNamespace()
    config.gtn.n_hidden = 1
    config.gtn = config.gtn.__dict__

    gtn = SERAC(model, config, lambda: copy.deepcopy(model)).cuda()
    # torch.save(gtn.state_dict(), "test_state.pt")
    import pdb; pdb.set_trace()
    gtn.load_state_dict(torch.load("test_state.pt"))
    x = torch.arange(20).view(1, 20).cuda() + 1000
    orig_logits = gtn(x)
    edited = gtn.edit(x, masks=torch.ones_like(x), labels=x)
    post_logits = gtn(x)

    assert torch.allclose(orig_logits, post_logits)

    orig_param = [p for (n, p) in gtn.model.named_parameters() if n == config.model.inner_params[-1]][0]
    edited_param = [p for (n, p) in edited.model.named_parameters() if n == config.model.inner_params[-1]][0]

    LOG.info((orig_param - edited_param).abs().max())
    edited.eval()
    LOG.info(gtn(x, labels=x).loss, edited(x, labels=x).loss, edited.edit_loss_fn(edited(x).logits, x)["nll"])
    edited2 = edited.edit(x, masks=torch.ones_like(x), labels=x)
    LOG.info(gtn(x, labels=x).loss, edited(x, labels=x).loss, edited2(x, labels=x).loss)