File size: 3,710 Bytes
65eef23
93798d6
89e27db
93798d6
 
89e27db
 
 
 
902d725
 
93798d6
 
9f3c7b7
b3740e7
 
89e27db
 
 
 
93798d6
 
 
b3740e7
93798d6
902d725
 
93798d6
902d725
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9db84b2
902d725
 
 
 
93798d6
db7fef9
 
 
 
 
 
93798d6
 
b3740e7
93798d6
 
 
 
 
db7fef9
93798d6
db7fef9
93798d6
9f3c7b7
93798d6
9f3c7b7
b3740e7
db7fef9
 
 
93798d6
 
 
 
db7fef9
93798d6
42f5f04
93798d6
b3740e7
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
import streamlit as st
import pandas as pd
import time

EDIT_ALGS = [
    "MEND: Model editor networks using gradient decomposition",
    "SERAC: Semi-parametric editing with a retrieval-augmented counterfactual model",
    "ENN: Editable neural networks",
    "KE: KnowledgeEditor",
    "FT: Fine-tuning",
    "LU: Lookup Cache"
]

def reset():
    st.session_state.edits.drop(st.session_state.edits.index, inplace=True)
    st.session_state.model_outputs.drop(st.session_state.edits.index, inplace=True)

    selected_alg = st.session_state.alg_selector
    selected_alg_idx = EDIT_ALGS.index(selected_alg)

    ############# Need to reset the model here (and maybe show progress spinner?)

def apply_edit():
    st.session_state.edits.loc[len(st.session_state.edits)] = [str(edit_input), str(edit_label)]

    ############# Actually do the edit to the model

def sample_model():
    input_str = str(test_input)
    model_output = "blah blah blah"  ############## Actually sample the model
    n_edits = len(st.session_state.edits)
    alg_name = st.session_state.alg_selector
    alg_abbrv = alg_name[:alg_name.index(":")]
    st.session_state.model_outputs.loc[len(st.session_state.model_outputs)] = [input_str, model_output, n_edits, alg_abbrv]

################################
#### Backend initialization ####
################################
if "init" not in st.session_state:
    st.session_state.edits = pd.DataFrame([], columns=["Edit input", "Edit label"])
    st.session_state.model_outputs = pd.DataFrame([], columns=["Input", "Output", "N edits", "Alg"])
    st.session_state.init = True
    st.session_state.model = None  ############## 


########################
#### Interface code ####
########################

st.title("Language Model Editing")
st.markdown("**Note: this HF space is currently under development and doesn't actually work yet!**")
st.markdown("The goal of this demo is to give you a sense of the *abilities* and *limitations* of existing methods for **editing** pre-trained language models. **Model editing** algorithms use a single input-output pair to update a pre-trained model's behavior for that input (and ideally, related inputs).")
st.markdown("This demo uses a [T5-large](https://huggingface.co/google/t5-large-ssm-nq) model fine-tuned on [Natural Questions](https://arxiv.org/pdf/2002.08910.pdf) as the base pre-trained model.")
st.write("You can choose from a variety of algorithms for model editing in the dropdown below. At the bottom of the page, you can query the model for whatever input you want before/after editing.")
st.markdown("***")

col1, col2 = st.columns([5,1])
with col1:
    alg_selector = st.selectbox("Editing algorithm:", EDIT_ALGS, key="alg_selector", on_change=reset)
with col2:
    st.text("ㅤ")
    st.button("Clear edits", on_click=reset)

st.write("Edits applied so far:")
st.table(st.session_state.edits)

col1, col2, col3 = st.columns([3, 2, 1])
with col1:
    edit_input = st.text_input("Edit input:", placeholder="e.g., 'What is the tallest mountain on Earth?'")
with col2:
    edit_label = st.text_input("Edit target:", placeholder="e.g., 'Denali'")
with col3:
    st.text("ㅤ")
    edit_button = st.button("Apply edit", on_click=apply_edit)

st.markdown("***")

if len(st.session_state.edits) == 0:
    title = "Input to sample from *unedited* model:"
else:
    title = f"Input to sample from *edited* model:"
col1, col2 = st.columns([5, 1])
with col1:
    test_input = st.text_input(title, placeholder="e.g., 'What is the earth's tallest mountain?'")
with col2:
    st.text("ㅤ")
    generate_button = st.button("Generate", on_click=sample_model)

st.write("Model generation history:")
st.table(st.session_state.model_outputs)