File size: 6,069 Bytes
569aa5e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e4b9ec4
 
 
 
a232c52
e4b9ec4
 
 
569aa5e
 
 
 
 
 
 
 
 
e4b9ec4
 
 
569aa5e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
import os
import time

import torch
import torch.nn as nn
import torchvision.datasets as datasets
import torchvision.transforms as transforms
from torch.utils.data import DataLoader
import torch.optim as optim

from tqdm import tqdm


def get_mean_std(loader):
  '''

  Calculates mean and std of input images.



  Args:

    loader (torch.DataLoader): Loader with images



  Returns:

    mean (torch.Tensor): Mean of images in loader

    std (torch.Tensor): Standard deviation of images in loader

  '''
  channels_sum, channels_squared_sum, num_batches = 0, 0, 0

  for data, _ in loader:
    channels_sum += torch.mean(data, dim=[0,2,3])  # mean across [no. of examples, height, width]
    channels_squared_sum += torch.mean(data**2, dim=[0,2,3])  # squared mean across [no. of examples, height, width]
    num_batches += 1

    mean = channels_sum/num_batches
    std = (channels_squared_sum/(num_batches-mean**2))**0.5

    return mean, std


class Net(nn.Module):
    '''

    model definition

    '''

    def __init__(self):
        super(Net, self).__init__()

        self.layer1 = nn.Sequential(
            nn.Conv2d(1, 32, kernel_size=5),
            nn.ReLU(),
        )
        self.layer2 = nn.Sequential(
            nn.Conv2d(32, 32, kernel_size=5, bias=False),
            nn.BatchNorm2d(32),
            nn.ReLU(),
            nn.MaxPool2d((2, 2)),
            nn.Dropout2d(0.25),
        )
        self.layer3 = nn.Sequential(
            nn.Conv2d(32, 64, kernel_size=3),
            nn.ReLU(),
        )
        self.layer4 = nn.Sequential(
            nn.Conv2d(64, 64, kernel_size=3, bias=False),
            nn.BatchNorm2d(64),
            nn.ReLU(),
            nn.MaxPool2d((2, 2)),
            nn.Dropout2d(0.25),
            nn.Flatten(),
        )
        self.layer5 = nn.Sequential(
            nn.Linear(576, 256, bias=False),
            nn.BatchNorm1d(256),
            nn.ReLU(),
        )
        self.layer6 = nn.Sequential(
            nn.Linear(256, 128, bias=False),
            nn.BatchNorm1d(128),
            nn.ReLU(),
        )
        self.layer7 = nn.Sequential(
            nn.Linear(128, 84, bias=False),
            nn.BatchNorm1d(84),
            nn.ReLU(),
            nn.Dropout(0.25),
        )
        self.layer8 = nn.Sequential(
            nn.Linear(84, 10),
            nn.LogSoftmax(dim=1),
        )

    def forward(self, x):
        x = transforms.Normalize(mean, std)(x)
        x = self.layer1(x)
        x = self.layer2(x)
        x = self.layer3(x)
        x = self.layer4(x)
        x = self.layer5(x)
        x = self.layer6(x)
        x = self.layer7(x)
        x = self.layer8(x)

        return x


# downloads and loads MNIST train set
transform = transforms.Compose([transforms.ToTensor(), transforms.RandomAffine(degrees=10, translate=(0.1,0.1))])
train_data = datasets.MNIST(root='./data', train=True, download=True, transform=transform)
train_loader = DataLoader(dataset=train_data, batch_size=64, shuffle=True, pin_memory=True)

# downloads and loads MNIST test set
val_data = datasets.MNIST(root='./data', train=False, download=True, transform=transforms.ToTensor())
val_loader = DataLoader(dataset=train_data, batch_size=64, shuffle=False, pin_memory=True)

# uses GPU if available
if torch.cuda.is_available():
  dev = "cuda:0"
else:
  dev = "cpu"

device = torch.device(dev)

# gets mean and std of dataset
mean, std = get_mean_std(train_loader)


def run_model():
    # defines parameters
    model = Net().to(device=device)
    optimizer = optim.Adam(model.parameters(), lr=0.1)
    scheduler = optim.lr_scheduler.ReduceLROnPlateau(optimizer, factor=0.2, patience=2)
    criterion = nn.NLLLoss()

    # iterates through epochs
    for epoch in range(30):
        print(f"\nEpoch {epoch+1}/{30}.")

        # train loop
        model.train()

        total_train_loss = 0
        total_correct = 0

        for i, (images, labels) in enumerate(tqdm(train_loader)):
            images = images.to(device)
            labels = labels.to(device)

            optimizer.zero_grad()

            outputs = model(images)

            loss = criterion(outputs, labels)
            total_train_loss += loss.item()

            loss.backward()
            optimizer.step()

            # Calculates train accuracy
            outputs_probs = nn.functional.softmax(
                outputs, dim=1)  # gets probabilities
            for idx, preds in enumerate(outputs_probs):
                # if label with max probability matches true label
                if labels[idx] == torch.argmax(preds.data):
                    total_correct += 1

        train_loss = total_train_loss/(i+1)
        train_accuracy = total_correct/len(train_data)

        print(f"Train set:- Loss: {train_loss}, Accuracy: {train_accuracy}.")

        # saves model state
        if not os.path.exists("./saved_models"):
            os.mkdir("./saved_models")
        torch.save(model.state_dict(), f"./saved_models/mnist-cnn-{time.time()}.pt")

        # val loop
        model.eval()

        total_val_loss = 0
        total_correct = 0

        with torch.no_grad():
            for i, (images, labels) in enumerate(tqdm(val_loader)):
                images = images.to(device)
                labels = labels.to(device)

                outputs = model(images)

                loss = criterion(outputs, labels)
                total_val_loss += loss.item()

                outputs_probs = nn.functional.softmax(outputs, dim=1)
                for idx, preds in enumerate(outputs_probs):
                    if labels[idx] == torch.argmax(preds.data):
                        total_correct += 1

        val_loss = total_val_loss/(i+1)
        val_accuracy = total_correct/len(val_data)

        print(f"Val set:- Loss: {val_loss}, Accuracy: {val_accuracy}.")

        # adjusts lr
        scheduler.step(val_loss)