File size: 5,494 Bytes
51d6cf1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
# Import the necessary Libraries
from warnings import filterwarnings
filterwarnings('ignore')
import os
import uuid
import json
import gradio as gr
import pandas as pd
from huggingface_hub import CommitScheduler
from pathlib import Path
from langchain.embeddings import SentenceTransformerEmbeddings
from langchain.vectorstores import Chroma
from langchain.llms import OpenAI

# Create Client
import os
os.environ['OPENAI_API_KEY']  = "gl-U2FsdGVkX1+0bNWD6YsVLZUYsn0m1WfLxUzrP0xUFbtWFAfk9Z1Cz+mD8u1yqKtV"; # e.g. gl-U2FsdGVkX19oG1mRO+LGAiNeC7nAeU8M65G4I6bfcdI7+9GUEjFFbplKq48J83by
os.environ["OPENAI_BASE_URL"] =  "https://aibe.mygreatlearning.com/openai/v1" # e.g. "https://aibe.mygreatlearning.com/openai/v1";

llm_client = OpenAI()

# Define the embedding model and the vectorstore
embedding_model = SentenceTransformerEmbeddings(model_name='thenlper/gte-large')
vectorstore_persisted = Chroma(
    collection_name='10k_reports',
    persist_directory='10k_reports_db',
    embedding_function=embedding_model
)

# Load the persisted vectorDB
vectorstore_persisted.load()

#
##
#

# Prepare the logging functionality
log_file = Path("logs/") / f"data_{uuid.uuid4()}.json"
log_folder = log_file.parent

scheduler = CommitScheduler(
    repo_id="eric-green-rag-financial-analyst",
    repo_type="dataset",
    folder_path=log_folder,
    path_in_repo="data",
    every=2
)

# Define the Q&A system message
# Create a system message for the LLM
qna_system_message = """
You are an assistant to a tech industry financial analyst. Your task is to provide relevant information about a set of companies AWS, Google, IBM, Meta, Microsoft.

User input will include the necessary context for you to answer their questions. This context will begin with the token: ###Context.
The context contains references to specific portions of documents relevant to the user's query, along with source links.
The source for a context will begin with the token ###Source.

When crafting your response:
1. Select only context relevant to answer the question.
2. Include the source links in your response.
3. User questions will begin with the token: ###Question.
4. If the question is irrelevant to financial report information for the 5 companies, respond with "I am unable to locate relevent information.  I answer questions related to the financial performance of AWS, Google, IBM, Meta and Microsoft."

Please adhere to the following guidelines:
- Your response should only be about the question asked and nothing else.
- Answer only using the context provided.
- Do not mention anything about the context in your final answer.
- If the answer is not found in the context, it is very very important for you to respond with "I am unable to locate a relevent answer."
- Always quote the source when you use the context. Cite the relevant source at the end of your response under the section - Source:
- Do not make up sources. Use the links provided in the sources section of the context and nothing else. You are prohibited from providing other links/sources.

Here is an example of how to structure your response:

Answer:
[Answer]

Source:
[Source]
"""

# Define the user message template
# Create a message template
qna_user_message_template = """
###Context
{context}

###Question
{question}
"""

# Define the llm_query function that runs when 'Submit' is clicked or when a API request is made
def llm_query(user_input,company):

    filter = "dataset/"+company+"-10-k-2023.pdf"
    
    relevant_document_chunks = vectorstore_persisted.similarity_search(user_input, k=5, filter={"source":filter})

    # 1 - Create context_for_query
    context_list = [d.page_content + "\n ###Source: " + str(d.metadata['page']) + "\n\n " for d in relevant_document_chunks]

    context_for_query = ". ".join(context_list)

    # 2 - Create messages
    prompt = [
        {'role':'system', 'content': qna_system_message},
        {'role': 'user', 'content': qna_user_message_template.format(
            context=context_for_query,
            question=user_input
            )
        }
    ]

    # Get response from the LLM
    try:
        response = llm_client.chat.completions.create(
            model=model_name,
            messages=prompt,
            temperature=0
        )

        prediction = response.choices[0].message.content.strip()

    except Exception as e:
        
        prediction = f'Sorry, I encountered the following error: \n {e}'

    print(prediction)

    # While the prediction is made, log both the inputs and outputs to a local log file
    # While writing to the log file, ensure that the commit scheduler is locked to avoid parallel
    # access

    with scheduler.lock:
        with log_file.open("a") as f:
            f.write(json.dumps(
                {
                    'user_input': user_input,
                    'retrieved_context': context_for_query,
                    'model_response': prediction
                }
            ))
            f.write("\n")

    return prediction

# Set-up the Gradio UI
company = gr.Radio(Label='Company:', choices=["aws", "google", "ibm", "meta", "microsoft"]) # Create a radio button for company selection
textbox = gr.Textbox(Label='Question:') # Create a textbox for user input

# Create Gradio interface
# For the inputs parameter of Interface provide [textbox,company] with outputs parameter of Interface provide prediction
demo = gr.Interface(fn=llm_query, inputs=[textbox, company], outputs="text")

demo.queue()
demo.launch()