Spaces:
Sleeping
Sleeping
File size: 3,593 Bytes
205b8f5 1f6a041 e496964 1f6a041 51a3166 205b8f5 1f6a041 3aff737 28ae202 205b8f5 51a3166 705287f a39ec9f 3aff737 1f6a041 205b8f5 3aff737 42b1f81 1f6a041 42b1f81 cc21c96 324786c cc21c96 42b1f81 decc5b1 28ae202 1f6a041 42b1f81 1f6a041 438e3e2 205b8f5 1f6a041 42b1f81 1f6a041 205b8f5 1f6a041 438e3e2 1f6a041 8725ec6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 |
# -*- coding:UTF-8 -*-
# !/usr/bin/env python
import spaces
import numpy as np
import gradio as gr
import gradio.exceptions
import roop.globals
from roop.core import (
start,
decode_execution_providers,
)
from roop.processors.frame.core import get_frame_processors_modules
from roop.utilities import normalize_output_path
import os
from PIL import Image
import uuid
import onnxruntime as ort
import cv2
from roop.face_analyser import get_one_face
@spaces.GPU
def swap_face(source_file, target_file, doFaceEnhancer):
session_id = str(uuid.uuid4()) # Tạo một UUID duy nhất cho mỗi phiên làm việc
session_dir = f"temp/{session_id}"
os.makedirs(session_dir, exist_ok=True)
source_path = os.path.join(session_dir, "input.jpg")
target_path = os.path.join(session_dir, "target.jpg")
source_image = Image.fromarray(source_file)
source_image.save(source_path)
target_image = Image.fromarray(target_file)
target_image.save(target_path)
print("source_path: ", source_path)
print("target_path: ", target_path)
# Check if a face is detected in the source image
source_face = get_one_face(cv2.imread(source_path))
if source_face is None:
raise gradio.exceptions.Error("No face in source path detected.")
# Check if a face is detected in the target image
target_face = get_one_face(cv2.imread(target_path))
if target_face is None:
raise gradio.exceptions.Error("No face in target path detected.")
output_path = os.path.join(session_dir, "output.jpg")
normalized_output_path = normalize_output_path(source_path, target_path, output_path)
frame_processors = ["face_swapper", "face_enhancer"] if doFaceEnhancer else ["face_swapper"]
headless = True
keep_fps = True
keep_audio = True
keep_frames = False
many_faces = False
video_encoder = "libx264"
video_quality = 18
max_memory = "12G"
execution_providers = ["CUDAExecutionProvider", "CPUExecutionProvider"] # Ưu tiên GPU, sau đó là CPU
execution_threads = 2
reference_face_position = 0
similar_face_distance = 0.6
print("Available providers:", ort.get_available_providers()) # Kiểm tra các provider hiện có
print("Configured execution providers:", execution_providers)
for frame_processor in get_frame_processors_modules(frame_processors):
if not frame_processor.pre_check():
print(f"Pre-check failed for {frame_processor}")
raise gradio.exceptions.Error(f"Pre-check failed for {frame_processor}")
roop.globals.source_path = source_path
roop.globals.target_path = target_path
roop.globals.output_path = normalized_output_path
roop.globals.frame_processors = frame_processors
roop.globals.headless = headless
roop.globals.keep_fps = keep_fps
roop.globals.keep_audio = keep_audio
roop.globals.keep_frames = keep_frames
roop.globals.many_faces = many_faces
roop.globals.video_encoder = video_encoder
roop.globals.video_quality = video_quality
roop.globals.max_memory = max_memory
roop.globals.execution_providers = execution_providers
roop.globals.execution_threads = execution_threads
roop.globals.reference_face_position = reference_face_position
roop.globals.similar_face_distance = similar_face_distance
start()
return normalized_output_path
app = gr.Interface(
fn=swap_face,
inputs=[
gr.Image(),
gr.Image(),
gr.Checkbox(label="Face Enhancer?", info="Do face enhancement?")
],
outputs="image"
)
app.launch()
|