Spaces:
Build error
Build error
File size: 8,504 Bytes
20ec090 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 |
import os
import re
import functools
import requests
import pandas as pd
import plotly.express as px
import torch
import gradio as gr
from transformers import pipeline, Wav2Vec2ProcessorWithLM
from pyannote.audio import Pipeline
from librosa import load, resample
from rpunct import RestorePuncts
from utils import split_into_sentences
os.environ["TOKENIZERS_PARALLELISM"] = "false"
device = 0 if torch.cuda.is_available() else -1
# summarization is done over inference API
headers = {"Authorization": f"Bearer {os.environ['HF_TOKEN']}"}
summarization_url = (
"https://api-inference.huggingface.co/models/knkarthick/MEETING_SUMMARY"
)
# There was an error related to Non-english text being detected,
# so this regular expression gets rid of any weird character.
# This might be completely unnecessary.
eng_pattern = r"[^\d\s\w'\.\,\?]"
def summarize(diarized, check):
"""
diarized: a list of tuples. Each tuple has a string to be displayed and a label for highlighting.
The start/end times are not highlighted [(speaker text, speaker id), (start time/end time, None)]
check is a list of speaker ids whose speech will get summarized
"""
if len(check) == 0:
return ""
text = ""
for d in diarized:
if len(check) == 2 and d[1] is not None:
text += f"\n{d[1]}: {d[0]}"
elif d[1] in check:
text += f"\n{d[0]}"
# inner function cached because outer function cannot be cached
@functools.lru_cache(maxsize=128)
def call_summarize_api(text):
payload = {
"inputs": text,
"options": {
"use_gpu": False,
"wait_for_model": True,
},
}
response = requests.post(summarization_url, headers=headers, json=payload)
return response.json()[0]["summary_text"]
return call_summarize_api(text)
# Audio components
asr_model = "patrickvonplaten/wav2vec2-base-960h-4-gram"
processor = Wav2Vec2ProcessorWithLM.from_pretrained(asr_model)
asr = pipeline(
"automatic-speech-recognition",
model=asr_model,
tokenizer=processor.tokenizer,
feature_extractor=processor.feature_extractor,
decoder=processor.decoder,
device=device,
)
speaker_segmentation = Pipeline.from_pretrained("pyannote/speaker-segmentation")
rpunct = RestorePuncts()
# Text components
emotion_pipeline = pipeline(
"text-classification",
model="bhadresh-savani/distilbert-base-uncased-emotion",
device=device,
)
EXAMPLES = [["example_audio.wav"], ["Customer_Support_Call.wav"]]
# display if the sentiment value is above these thresholds
thresholds = {
"joy": 0.99,
"anger": 0.95,
"surprise": 0.95,
"sadness": 0.98,
"fear": 0.95,
"love": 0.99,
}
def speech_to_text(speech):
speaker_output = speaker_segmentation(speech)
speech, sampling_rate = load(speech)
if sampling_rate != 16000:
speech = resample(speech, sampling_rate, 16000)
text = asr(speech, return_timestamps="word")
chunks = text["chunks"]
diarized_output = []
i = 0
speaker_counter = 0
# New iteration every time the speaker changes
for turn, _, _ in speaker_output.itertracks(yield_label=True):
speaker = "Customer" if speaker_counter % 2 == 0 else "Support"
diarized = ""
while i < len(chunks) and chunks[i]["timestamp"][1] <= turn.end:
diarized += chunks[i]["text"].lower() + " "
i += 1
if diarized != "":
diarized = rpunct.punctuate(re.sub(eng_pattern, "", diarized), lang="en")
diarized_output.extend(
[
(diarized, speaker),
("from {:.2f}-{:.2f}".format(turn.start, turn.end), None),
]
)
speaker_counter += 1
return diarized_output
def sentiment(diarized):
"""
diarized: a list of tuples. Each tuple has a string to be displayed and a label for highlighting.
The start/end times are not highlighted [(speaker text, speaker id), (start time/end time, None)]
This function gets the customer's sentiment and returns a list for highlighted text as well
as a plot of sentiment over time.
"""
customer_sentiments = []
to_plot = []
plot_sentences = []
# used to set the x range of ticks on the plot
x_min = 100
x_max = 0
for i in range(0, len(diarized), 2):
speaker_speech, speaker_id = diarized[i]
times, _ = diarized[i + 1]
sentences = split_into_sentences(speaker_speech)
start_time, end_time = times[5:].split("-")
start_time, end_time = float(start_time), float(end_time)
interval_size = (end_time - start_time) / len(sentences)
if "Customer" in speaker_id:
outputs = emotion_pipeline(sentences)
for idx, (o, t) in enumerate(zip(outputs, sentences)):
sent = "neutral"
if o["score"] > thresholds[o["label"]]:
customer_sentiments.append(
(t + f"({round(idx*interval_size+start_time,1)} s)", o["label"])
)
if o["label"] in {"joy", "love", "surprise"}:
sent = "positive"
elif o["label"] in {"sadness", "anger", "fear"}:
sent = "negative"
if sent != "neutral":
to_plot.append((start_time + idx * interval_size, sent))
plot_sentences.append(t)
if start_time < x_min:
x_min = start_time
if end_time > x_max:
x_max = end_time
x_min -= 5
x_max += 5
x, y = list(zip(*to_plot))
plot_df = pd.DataFrame(
data={
"x": x,
"y": y,
"sentence": plot_sentences,
}
)
fig = px.line(
plot_df,
x="x",
y="y",
hover_data={
"sentence": True,
"x": True,
"y": False,
},
labels={"x": "time (seconds)", "y": "sentiment"},
title=f"Customer sentiment over time",
)
fig = fig.update_yaxes(categoryorder="category ascending")
fig = fig.update_layout(
font=dict(
size=18,
),
xaxis_range=[x_min, x_max],
)
return customer_sentiments, fig
demo = gr.Blocks(enable_queue=True)
demo.encrypt = False
# for highlighting purposes
color_map = {
"joy": "green",
"anger": "red",
"surprise": "yellow",
"sadness": "blue",
"fear": "orange",
"love": "purple",
}
with demo:
with gr.Row():
with gr.Column():
audio = gr.Audio(label="Audio file", type="filepath")
with gr.Row():
btn = gr.Button("Transcribe")
with gr.Row():
examples = gr.components.Dataset(
components=[audio], samples=EXAMPLES, type="index"
)
with gr.Column():
gr.Markdown("**Call Transcript:**")
diarized = gr.HighlightedText(label="Call Transcript")
gr.Markdown("Choose speaker to summarize:")
check = gr.CheckboxGroup(
choices=["Customer", "Support"], show_label=False, type="value"
)
summary = gr.Textbox(lines=4)
sentiment_btn = gr.Button("Get Customer Sentiment")
analyzed = gr.HighlightedText(color_map=color_map)
plot = gr.Plot(label="Sentiment over time", type="plotly")
# when example button is clicked, convert audio file to text and diarize
btn.click(
speech_to_text,
audio,
[diarized],
status_tracker=gr.StatusTracker(cover_container=True),
)
# when summarize checkboxes are changed, create summary
check.change(summarize, [diarized, check], summary)
# when sentiment button clicked, display highlighted text and plot
sentiment_btn.click(sentiment, [diarized], [analyzed, plot])
def cache_example(example):
processed_examples = audio.preprocess_example(example)
diarized_output = speech_to_text(example)
return processed_examples, diarized_output
cache = [cache_example(e[0]) for e in EXAMPLES]
def load_example(example_id):
return cache[example_id]
examples._click_no_postprocess(
load_example, inputs=[examples], outputs=[audio, diarized], queue=False
)
demo.launch(debug=1)
|