File size: 8,338 Bytes
fe1195b
 
 
 
 
 
 
 
 
 
 
d13bccc
fe1195b
d13bccc
fe1195b
 
 
 
 
 
 
 
 
 
d13bccc
fe1195b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d13bccc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fe1195b
 
 
 
 
 
 
 
 
d13bccc
fe1195b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d13bccc
fe1195b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d13bccc
fe1195b
 
 
 
d13bccc
fe1195b
 
 
 
 
 
 
 
 
 
 
 
d13bccc
fe1195b
 
 
 
 
 
 
 
 
 
 
 
 
 
d13bccc
fe1195b
d13bccc
fe1195b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1082a29
fe1195b
 
 
 
 
 
 
 
1082a29
 
 
 
 
fe1195b
 
d13bccc
fe1195b
 
 
 
 
d13bccc
fe1195b
e1ab149
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
import os
import gradio as gr
import torch
import torch.nn as nn
import torch.nn.functional as F
import numpy as np
from PIL import Image
import torchvision.transforms as transforms
import matplotlib.pyplot as plt
import timm


class BaseModel(nn.Module):
    
    def predict(self, x: torch.Tensor) -> torch.Tensor:
        with torch.no_grad():
            logits = self(x)
            return F.softmax(logits, dim=1)

    def get_num_classes(self) -> int:
        raise NotImplementedError


class CNNModel(BaseModel):
    
    def __init__(self, num_classes: int, input_size: int = 224):
        super(CNNModel, self).__init__()
        
        self.conv_layers = nn.Sequential(
            # First block: 32 filters
            nn.Conv2d(3, 32, kernel_size=3, padding=1),
            nn.BatchNorm2d(32),
            nn.ReLU(),
            nn.MaxPool2d(2),
            
            # Second block: 64 filters
            nn.Conv2d(32, 64, kernel_size=3, padding=1),
            nn.BatchNorm2d(64),
            nn.ReLU(),
            nn.MaxPool2d(2),
            
            # Third block: 128 filters
            nn.Conv2d(64, 128, kernel_size=3, padding=1),
            nn.BatchNorm2d(128),
            nn.ReLU(),
            nn.MaxPool2d(2),
            
            # Global Average Pooling
            nn.AdaptiveAvgPool2d(1)
        )
        
        self.classifier = nn.Sequential(
            nn.Flatten(),
            nn.Dropout(0.5),
            nn.Linear(128, 256),
            nn.ReLU(),
            nn.Dropout(0.3),
            nn.Linear(256, num_classes)
        )

        self._initialize_weights()

    def _initialize_weights(self):
        for m in self.modules():
            if isinstance(m, nn.Conv2d):
                nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu')
                if m.bias is not None:
                    nn.init.constant_(m.bias, 0)
            elif isinstance(m, nn.BatchNorm2d):
                nn.init.constant_(m.weight, 1)
                nn.init.constant_(m.bias, 0)
            elif isinstance(m, nn.Linear):
                nn.init.normal_(m.weight, 0, 0.01)
                nn.init.constant_(m.bias, 0)

    def forward(self, x: torch.Tensor) -> torch.Tensor:
        x = self.conv_layers(x)
        return self.classifier(x)

    def get_num_classes(self) -> int:
        return self.classifier[-1].out_features


class EfficientNetModel(BaseModel):
    
    def __init__(
        self,
        num_classes: int,
        model_name: str = "efficientnet_b0",
        pretrained: bool = True
    ):
        super(EfficientNetModel, self).__init__()
        
        self.base_model = timm.create_model(
            model_name,
            pretrained=pretrained,
            num_classes=0
        )
        
        with torch.no_grad():
            dummy_input = torch.randn(1, 3, 224, 224)
            features = self.base_model(dummy_input)
            feature_dim = features.shape[1]

        self.classifier = nn.Sequential(
            nn.Dropout(0.2),
            nn.Linear(feature_dim, num_classes)
        )

    def forward(self, x: torch.Tensor) -> torch.Tensor:
        features = self.base_model(x)
        return self.classifier(features)

    def get_num_classes(self) -> int:
        return self.classifier[-1].out_features


class AnimalClassifierApp:
    def __init__(self):
        """Initialize the application."""
        self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
        self.labels = ["bird", "cat", "dog", "horse"]
        
        self.transform = transforms.Compose([
            transforms.Resize((224, 224)),
            transforms.ToTensor(),
            transforms.Normalize(
                mean=[0.485, 0.456, 0.406],
                std=[0.229, 0.224, 0.225]
            )
        ])
        
        self.models = self.load_models()
        if not self.models:
            print("Warning: No models found in checkpoints directory!")

    def load_models(self):
        """Load both trained models."""
        models = {}
        
        try:
            efficientnet = EfficientNetModel(num_classes=len(self.labels))
            efficientnet_path = os.path.join("checkpoints", "efficientnet", "efficientnet_best_model.pth")
            if os.path.exists(efficientnet_path):
                checkpoint = torch.load(efficientnet_path, map_location=self.device, weights_only=True)
                state_dict = checkpoint.get('model_state_dict', checkpoint)
                efficientnet.load_state_dict(state_dict, strict=False)
                efficientnet.eval()
                models['EfficientNet'] = efficientnet
                print("Successfully loaded EfficientNet model")
        except Exception as e:
            print(f"Error loading EfficientNet model: {str(e)}")
        
        try:
            cnn = CNNModel(num_classes=len(self.labels))
            cnn_path = os.path.join("checkpoints", "cnn", "cnn_best_model.pth")
            if os.path.exists(cnn_path):
                checkpoint = torch.load(cnn_path, map_location=self.device, weights_only=True)
                state_dict = checkpoint.get('model_state_dict', checkpoint)
                cnn.load_state_dict(state_dict, strict=False)
                cnn.eval()
                models['CNN'] = cnn
                print("Successfully loaded CNN model")
        except Exception as e:
            print(f"Error loading CNN model: {str(e)}")
        
        return models

    def predict(self, image: Image.Image):
        if not self.models:
            return ["No trained models found. Please train the models first.", ""]
        
        # Preprocess image
        img_tensor = self.transform(image).unsqueeze(0).to(self.device)
        
        results = {}
        probabilities = {}
        for model_name, model in self.models.items():
            with torch.no_grad():
                output = model(img_tensor)
                probs = F.softmax(output, dim=1).squeeze().cpu().numpy()
                probabilities[model_name] = probs
                
                pred_idx = np.argmax(probs)
                pred_label = self.labels[pred_idx]
                pred_prob = probs[pred_idx]
                results[model_name] = (pred_label, pred_prob)
        
        fig = plt.figure(figsize=(12, 5))
        
        if 'EfficientNet' in probabilities:
            plt.subplot(1, 2, 1)
            plt.bar(self.labels, probabilities['EfficientNet'], color='skyblue')
            plt.title('EfficientNet Predictions')
            plt.ylim(0, 1)
            plt.xticks(rotation=45)
            plt.ylabel('Probability')
        
        if 'CNN' in probabilities:
            plt.subplot(1, 2, 2)
            plt.bar(self.labels, probabilities['CNN'], color='lightcoral')
            plt.title('CNN Predictions')
            plt.ylim(0, 1)
            plt.xticks(rotation=45)
            plt.ylabel('Probability')
        
        plt.tight_layout()
        
        text_results = "Model Predictions:\n\n"
        for model_name, (label, prob) in results.items():
            text_results += f"{model_name}:\n"
            text_results += f"Top prediction: {label} ({prob:.2%})\n"
            text_results += "All probabilities:\n"
            for label, prob in zip(self.labels, probabilities[model_name]):
                text_results += f"  {label}: {prob:.2%}\n"
            text_results += "\n"
        
        return [fig, text_results]

    def create_interface(self):
        """Create Gradio interface."""
        return gr.Interface(
            fn=self.predict,
            inputs=gr.Image(type="pil"),
            outputs=[
                gr.Plot(label="Prediction Probabilities"),
                gr.Textbox(label="Detailed Results", lines=10)
            ],
            title="Animal Classifier - Model Comparison",
            description=(
                "Upload an image of one of these animals: Bird, Cat, Dog, or Horse.\n"
                "The app will compare predictions from both EfficientNet and CNN models.\n\n"
                "Note: For best results, ensure the animal is clearly visible in the image."
            )
        )


def main():
    app = AnimalClassifierApp()
    interface = app.create_interface()
    interface.launch()


if __name__ == "__main__":
    main()