File size: 22,795 Bytes
9fa1139
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b5f9291
3f6d039
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
df3b6c7
73ad917
3f6d039
fa4df14
3f6d039
73ad917
 
3f6d039
 
546974b
7b7e78e
 
df3b6c7
92ccf45
546974b
 
 
 
 
73ad917
92ccf45
3f6d039
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1444db3
 
 
 
3f6d039
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b5f9291
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
import sys 

class Tee:
    def __init__(self, file_name, mode='a'):
        self.file = open(file_name, mode)
        self.stdout = sys.stdout

    def write(self, message):
        self.file.write(message)
        self.stdout.write(message)

    def flush(self):
        self.file.flush()
        self.stdout.flush()
        

ttt = Tee("log.txt")

sys.stdout =ttt
sys.stderr =ttt

import os 
os.system("python3 -m http.server 7860 -b 0.0.0.0 &")

# -*- coding: utf-8 -*-
"""image_captioning.ipynb

Automatically generated by Colaboratory.

Original file is located at
    https://colab.research.google.com/#fileId=https%3A//huggingface.co/keras-io/image-captioning/blob/main/image_captioning.ipynb

##### Copyright 2018 The TensorFlow Authors.
"""

#@title Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# https://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.



import tensorflow as tf

# You'll generate plots of attention in order to see which parts of an image
# your model focuses on during captioning
import matplotlib.pyplot as plt

import collections
import random
import numpy as np
import os
import time
import json
from PIL import Image

"""## Download and prepare the MS-COCO dataset

You will use the [MS-COCO dataset](http://cocodataset.org/#home) to train your model. The dataset contains over 82,000 images, each of which has at least 5 different caption annotations. The code below downloads and extracts the dataset automatically.

**Caution: large download ahead**. You'll use the training set, which is a 13GB file.
"""
# Download caption annotation files
annotation_folder = 'annotations/'
annotation_zip = tf.keras.utils.get_file('captions.zip',
                                           cache_subdir=os.path.abspath('.'),
                                           origin='http://images.cocodataset.org/annotations/annotations_trainval2014.zip',
                                           extract=True)
annotation_file = os.path.dirname(annotation_zip)+'/annotations/captions_train2014.json'
# os.remove(annotation_zip)

# Download image files
os.system("wget http://images.cocodataset.org/zips/train2014.zip")
os.system("unzip train2014.zip")

image_folder = 'train2014/'

# image_zip = tf.keras.utils.get_file('train2014.zip',
#                                       cache_subdir=os.path.abspath('.'),
#                                       origin='http://images.cocodataset.org/zips/train2014.zip',
#                                       extract=True)
PATH = os.path.dirname("train2014.zip") + image_folder
# os.remove(image_zip)



"""## Optional: limit the size of the training set
To speed up training for this tutorial, you'll use a subset of 30,000 captions and their corresponding images to train your model. Choosing to use more data would result in improved captioning quality.
"""

with open(annotation_file, 'r') as f:
    annotations = json.load(f)

# Group all captions together having the same image ID.
image_path_to_caption = collections.defaultdict(list)
for val in annotations['annotations']:
  caption = f"<start> {val['caption']} <end>"
  image_path = PATH + 'COCO_train2014_' + '%012d.jpg' % (val['image_id'])
  image_path_to_caption[image_path].append(caption)

image_paths = list(image_path_to_caption.keys())
random.shuffle(image_paths)

# Select the first 6000 image_paths from the shuffled set.
# Approximately each image id has 5 captions associated with it, so that will
# lead to 30,000 examples.
train_image_paths = image_paths[:6000]
print(len(train_image_paths))

train_captions = []
img_name_vector = []

for image_path in train_image_paths:
  caption_list = image_path_to_caption[image_path]
  train_captions.extend(caption_list)
  img_name_vector.extend([image_path] * len(caption_list))

print(train_captions[0])
Image.open(img_name_vector[0])

"""## Preprocess the images using InceptionV3
Next, you will use InceptionV3 (which is pretrained on Imagenet) to classify each image. You will extract features from the last convolutional layer.

First, you will convert the images into InceptionV3's expected format by:
* Resizing the image to 299px by 299px
* [Preprocess the images](https://cloud.google.com/tpu/docs/inception-v3-advanced#preprocessing_stage) using the [preprocess_input](https://www.tensorflow.org/api_docs/python/tf/keras/applications/inception_v3/preprocess_input) method to normalize the image so that it contains pixels in the range of -1 to 1, which matches the format of the images used to train InceptionV3.
"""

def load_image(image_path):
    img = tf.io.read_file(image_path)
    img = tf.io.decode_jpeg(img, channels=3)
    img = tf.keras.layers.Resizing(299, 299)(img)
    img = tf.keras.applications.inception_v3.preprocess_input(img)
    return img, image_path

"""## Initialize InceptionV3 and load the pretrained Imagenet weights

Now you'll create a tf.keras model where the output layer is the last convolutional layer in the InceptionV3 architecture. The shape of the output of this layer is ```8x8x2048```. You use the last convolutional layer because you are using attention in this example. You don't perform this initialization during training because it could become a bottleneck.

* You forward each image through the network and store the resulting vector in a dictionary (image_name --> feature_vector).
* After all the images are passed through the network, you save the dictionary to disk.

"""

# image_model = tf.keras.applications.InceptionV3(include_top=False,
#                                                 weights='imagenet') 

image_model = tf.keras.models.load_model("incep.h5")
new_input = image_model.input
hidden_layer = image_model.layers[-1].output

image_features_extract_model = tf.keras.Model(new_input, hidden_layer)

"""## Caching the features extracted from InceptionV3

You will pre-process each image with InceptionV3 and cache the output to disk. Caching the output in RAM would be faster but also memory intensive, requiring 8 \* 8 \* 2048 floats per image. At the time of writing, this exceeds the memory limitations of Colab (currently 12GB of memory).

Performance could be improved with a more sophisticated caching strategy (for example, by sharding the images to reduce random access disk I/O), but that would require more code.

The caching will take about 10 minutes to run in Colab with a GPU. If you'd like to see a progress bar, you can:

1. Install [tqdm](https://github.com/tqdm/tqdm):

    `!pip install tqdm`

2. Import tqdm:

    `from tqdm import tqdm`

3. Change the following line:

    `for img, path in image_dataset:`

    to:

    `for img, path in tqdm(image_dataset):`

"""

# Get unique images
encode_train = sorted(set(img_name_vector))

# Feel free to change batch_size according to your system configuration
image_dataset = tf.data.Dataset.from_tensor_slices(encode_train)
image_dataset = image_dataset.map(
  load_image, num_parallel_calls=tf.data.AUTOTUNE).batch(16)

for img, path in image_dataset:
  batch_features = image_features_extract_model(img)
  batch_features = tf.reshape(batch_features,
                              (batch_features.shape[0], -1, batch_features.shape[3]))

  for bf, p in zip(batch_features, path):
    path_of_feature = p.numpy().decode("utf-8")
    np.save(path_of_feature, bf.numpy())

"""## Preprocess and tokenize the captions

You will transform the text captions into integer sequences using the [TextVectorization](https://www.tensorflow.org/api_docs/python/tf/keras/layers/TextVectorization) layer, with the following steps:

* Use [adapt](https://www.tensorflow.org/api_docs/python/tf/keras/layers/TextVectorization#adapt) to iterate over all captions, split the captions into words, and compute a vocabulary of the top 5,000 words (to save memory).
* Tokenize all captions by mapping each word to it's index in the vocabulary. All output sequences will be padded to length 50.
* Create word-to-index and index-to-word mappings to display results.
"""

caption_dataset = tf.data.Dataset.from_tensor_slices(train_captions)

# We will override the default standardization of TextVectorization to preserve
# "<>" characters, so we preserve the tokens for the <start> and <end>.
def standardize(inputs):
  inputs = tf.strings.lower(inputs)
  return tf.strings.regex_replace(inputs,
                                  r"!\"#$%&\(\)\*\+.,-/:;=?@\[\\\]^_`{|}~", "")

# Max word count for a caption.
max_length = 50
# Use the top 5000 words for a vocabulary.
vocabulary_size = 5000
tokenizer = tf.keras.layers.TextVectorization(
    max_tokens=vocabulary_size,
    standardize=standardize,
    output_sequence_length=max_length)
# Learn the vocabulary from the caption data.
tokenizer.adapt(caption_dataset)

# Create the tokenized vectors
cap_vector = caption_dataset.map(lambda x: tokenizer(x))

# Create mappings for words to indices and indicies to words.
word_to_index = tf.keras.layers.StringLookup(
    mask_token="",
    vocabulary=tokenizer.get_vocabulary())
index_to_word = tf.keras.layers.StringLookup(
    mask_token="",
    vocabulary=tokenizer.get_vocabulary(),
    invert=True)

"""## Split the data into training and testing"""

img_to_cap_vector = collections.defaultdict(list)
for img, cap in zip(img_name_vector, cap_vector):
  img_to_cap_vector[img].append(cap)

# Create training and validation sets using an 80-20 split randomly.
img_keys = list(img_to_cap_vector.keys())
random.shuffle(img_keys)

slice_index = int(len(img_keys)*0.8)
img_name_train_keys, img_name_val_keys = img_keys[:slice_index], img_keys[slice_index:]

img_name_train = []
cap_train = []
for imgt in img_name_train_keys:
  capt_len = len(img_to_cap_vector[imgt])
  img_name_train.extend([imgt] * capt_len)
  cap_train.extend(img_to_cap_vector[imgt])

img_name_val = []
cap_val = []
for imgv in img_name_val_keys:
  capv_len = len(img_to_cap_vector[imgv])
  img_name_val.extend([imgv] * capv_len)
  cap_val.extend(img_to_cap_vector[imgv])

len(img_name_train), len(cap_train), len(img_name_val), len(cap_val)

"""## Create a tf.data dataset for training

Your images and captions are ready! Next, let's create a `tf.data` dataset to use for training your model.
"""

# Feel free to change these parameters according to your system's configuration

BATCH_SIZE = 64
BUFFER_SIZE = 1000
embedding_dim = 256
units = 512
num_steps = len(img_name_train) // BATCH_SIZE
# Shape of the vector extracted from InceptionV3 is (64, 2048)
# These two variables represent that vector shape
features_shape = 2048
attention_features_shape = 64

# Load the numpy files
def map_func(img_name, cap):
  img_tensor = np.load(img_name.decode('utf-8')+'.npy')
  return img_tensor, cap

dataset = tf.data.Dataset.from_tensor_slices((img_name_train, cap_train))

# Use map to load the numpy files in parallel
dataset = dataset.map(lambda item1, item2: tf.numpy_function(
          map_func, [item1, item2], [tf.float32, tf.int64]),
          num_parallel_calls=tf.data.AUTOTUNE)

# Shuffle and batch
dataset = dataset.shuffle(BUFFER_SIZE).batch(BATCH_SIZE)
dataset = dataset.prefetch(buffer_size=tf.data.AUTOTUNE)

"""## Model

Fun fact: the decoder below is identical to the one in the example for [Neural Machine Translation with Attention](https://www.tensorflow.org/text/tutorials/nmt_with_attention).

The model architecture is inspired by the [Show, Attend and Tell](https://arxiv.org/pdf/1502.03044.pdf) paper.

* In this example, you extract the features from the lower convolutional layer of InceptionV3 giving us a vector of shape (8, 8, 2048).
* You squash that to a shape of (64, 2048).
* This vector is then passed through the CNN Encoder (which consists of a single Fully connected layer).
* The RNN (here GRU) attends over the image to predict the next word.
"""

class BahdanauAttention(tf.keras.Model):
  def __init__(self, units):
    super(BahdanauAttention, self).__init__()
    self.W1 = tf.keras.layers.Dense(units)
    self.W2 = tf.keras.layers.Dense(units)
    self.V = tf.keras.layers.Dense(1)

  def call(self, features, hidden):
    # features(CNN_encoder output) shape == (batch_size, 64, embedding_dim)

    # hidden shape == (batch_size, hidden_size)
    # hidden_with_time_axis shape == (batch_size, 1, hidden_size)
    hidden_with_time_axis = tf.expand_dims(hidden, 1)

    # attention_hidden_layer shape == (batch_size, 64, units)
    attention_hidden_layer = (tf.nn.tanh(self.W1(features) +
                                         self.W2(hidden_with_time_axis)))

    # score shape == (batch_size, 64, 1)
    # This gives you an unnormalized score for each image feature.
    score = self.V(attention_hidden_layer)

    # attention_weights shape == (batch_size, 64, 1)
    attention_weights = tf.nn.softmax(score, axis=1)

    # context_vector shape after sum == (batch_size, hidden_size)
    context_vector = attention_weights * features
    context_vector = tf.reduce_sum(context_vector, axis=1)

    return context_vector, attention_weights

class CNN_Encoder(tf.keras.Model):
    # Since you have already extracted the features and dumped it
    # This encoder passes those features through a Fully connected layer
    def __init__(self, embedding_dim):
        super(CNN_Encoder, self).__init__()
        # shape after fc == (batch_size, 64, embedding_dim)
        self.fc = tf.keras.layers.Dense(embedding_dim)

    def call(self, x):
        x = self.fc(x)
        x = tf.nn.relu(x)
        return x

class RNN_Decoder(tf.keras.Model):
  def __init__(self, embedding_dim, units, vocab_size):
    super(RNN_Decoder, self).__init__()
    self.units = units

    self.embedding = tf.keras.layers.Embedding(vocab_size, embedding_dim)
    self.gru = tf.keras.layers.GRU(self.units,
                                   return_sequences=True,
                                   return_state=True,
                                   recurrent_initializer='glorot_uniform')
    self.fc1 = tf.keras.layers.Dense(self.units)
    self.fc2 = tf.keras.layers.Dense(vocab_size)

    self.attention = BahdanauAttention(self.units)

  def call(self, x, features, hidden):
    # defining attention as a separate model
    context_vector, attention_weights = self.attention(features, hidden)

    # x shape after passing through embedding == (batch_size, 1, embedding_dim)
    x = self.embedding(x)

    # x shape after concatenation == (batch_size, 1, embedding_dim + hidden_size)
    x = tf.concat([tf.expand_dims(context_vector, 1), x], axis=-1)

    # passing the concatenated vector to the GRU
    output, state = self.gru(x)

    # shape == (batch_size, max_length, hidden_size)
    x = self.fc1(output)

    # x shape == (batch_size * max_length, hidden_size)
    x = tf.reshape(x, (-1, x.shape[2]))

    # output shape == (batch_size * max_length, vocab)
    x = self.fc2(x)

    return x, state, attention_weights

  def reset_state(self, batch_size):
    return tf.zeros((batch_size, self.units))

encoder = CNN_Encoder(embedding_dim)
decoder = RNN_Decoder(embedding_dim, units, tokenizer.vocabulary_size())

optimizer = tf.keras.optimizers.Adam()
loss_object = tf.keras.losses.SparseCategoricalCrossentropy(
    from_logits=True, reduction='none')


def loss_function(real, pred):
  mask = tf.math.logical_not(tf.math.equal(real, 0))
  loss_ = loss_object(real, pred)

  mask = tf.cast(mask, dtype=loss_.dtype)
  loss_ *= mask

  return tf.reduce_mean(loss_)

"""## Checkpoint"""

checkpoint_path = "./checkpoints/train"
ckpt = tf.train.Checkpoint(encoder=encoder,
                           decoder=decoder,
                           optimizer=optimizer)
ckpt_manager = tf.train.CheckpointManager(ckpt, checkpoint_path, max_to_keep=5)

start_epoch = 0
if ckpt_manager.latest_checkpoint:
  start_epoch = int(ckpt_manager.latest_checkpoint.split('-')[-1])
  # restoring the latest checkpoint in checkpoint_path
  ckpt.restore(ckpt_manager.latest_checkpoint)

"""## Training

* You extract the features stored in the respective `.npy` files and then pass those features through the encoder.
* The encoder output, hidden state(initialized to 0) and the decoder input (which is the start token) is passed to the decoder.
* The decoder returns the predictions and the decoder hidden state.
* The decoder hidden state is then passed back into the model and the predictions are used to calculate the loss.
* Use teacher forcing to decide the next input to the decoder.
* Teacher forcing is the technique where the target word is passed as the next input to the decoder.
* The final step is to calculate the gradients and apply it to the optimizer and backpropagate.

"""

# adding this in a separate cell because if you run the training cell
# many times, the loss_plot array will be reset
loss_plot = []

@tf.function
def train_step(img_tensor, target):
  loss = 0

  # initializing the hidden state for each batch
  # because the captions are not related from image to image
  hidden = decoder.reset_state(batch_size=target.shape[0])

  dec_input = tf.expand_dims([word_to_index('<start>')] * target.shape[0], 1)

  with tf.GradientTape() as tape:
      features = encoder(img_tensor)

      for i in range(1, target.shape[1]):
          # passing the features through the decoder
          predictions, hidden, _ = decoder(dec_input, features, hidden)

          loss += loss_function(target[:, i], predictions)

          # using teacher forcing
          dec_input = tf.expand_dims(target[:, i], 1)

  total_loss = (loss / int(target.shape[1]))

  trainable_variables = encoder.trainable_variables + decoder.trainable_variables

  gradients = tape.gradient(loss, trainable_variables)

  optimizer.apply_gradients(zip(gradients, trainable_variables))

  return loss, total_loss

EPOCHS = 50

for epoch in range(start_epoch, EPOCHS):
    start = time.time()
    total_loss = 0

    for (batch, (img_tensor, target)) in enumerate(dataset):
        batch_loss, t_loss = train_step(img_tensor, target)
        total_loss += t_loss

        if batch % 100 == 0:
            average_batch_loss = batch_loss.numpy()/int(target.shape[1])
            print(f'Epoch {epoch+1} Batch {batch} Loss {average_batch_loss:.4f}')
    # storing the epoch end loss value to plot later
    loss_plot.append(total_loss / num_steps)

    if epoch % 5 == 0:
      ckpt_manager.save()

    print(f'Epoch {epoch+1} Loss {total_loss/num_steps:.6f}')
    print(f'Time taken for 1 epoch {time.time()-start:.2f} sec\n')

plt.plot(loss_plot)
plt.xlabel('Epochs')
plt.ylabel('Loss')
plt.title('Loss Plot')
plt.show()

"""## Caption!

* The evaluate function is similar to the training loop, except you don't use teacher forcing here. The input to the decoder at each time step is its previous predictions along with the hidden state and the encoder output.
* Stop predicting when the model predicts the end token.
* And store the attention weights for every time step.
"""

def evaluate(image):
    attention_plot = np.zeros((max_length, attention_features_shape))

    hidden = decoder.reset_state(batch_size=1)

    temp_input = tf.expand_dims(load_image(image)[0], 0)
    img_tensor_val = image_features_extract_model(temp_input)
    img_tensor_val = tf.reshape(img_tensor_val, (img_tensor_val.shape[0],
                                                 -1,
                                                 img_tensor_val.shape[3]))

    features = encoder(img_tensor_val)

    dec_input = tf.expand_dims([word_to_index('<start>')], 0)
    result = []

    for i in range(max_length):
        predictions, hidden, attention_weights = decoder(dec_input,
                                                         features,
                                                         hidden)

        attention_plot[i] = tf.reshape(attention_weights, (-1, )).numpy()

        predicted_id = tf.random.categorical(predictions, 1)[0][0].numpy()
        predicted_word = tf.compat.as_text(index_to_word(predicted_id).numpy())
        result.append(predicted_word)

        if predicted_word == '<end>':
            return result, attention_plot

        dec_input = tf.expand_dims([predicted_id], 0)

    attention_plot = attention_plot[:len(result), :]
    return result, attention_plot

def plot_attention(image, result, attention_plot):
    temp_image = np.array(Image.open(image))

    fig = plt.figure(figsize=(10, 10))

    len_result = len(result)
    for i in range(len_result):
        temp_att = np.resize(attention_plot[i], (8, 8))
        grid_size = max(int(np.ceil(len_result/2)), 2)
        ax = fig.add_subplot(grid_size, grid_size, i+1)
        ax.set_title(result[i])
        img = ax.imshow(temp_image)
        ax.imshow(temp_att, cmap='gray', alpha=0.6, extent=img.get_extent())

    plt.tight_layout()
    plt.show()

# captions on the validation set
rid = np.random.randint(0, len(img_name_val))
image = img_name_val[rid]
real_caption = ' '.join([tf.compat.as_text(index_to_word(i).numpy())
                         for i in cap_val[rid] if i not in [0]])
result, attention_plot = evaluate(image)

print('Real Caption:', real_caption)
print('Prediction Caption:', ' '.join(result))
plot_attention(image, result, attention_plot)

"""## Try it on your own images

For fun, below you're provided a method you can use to caption your own images with the model you've just trained. Keep in mind, it was trained on a relatively small amount of data, and your images may be different from the training data (so be prepared for weird results!)

"""

image_url = 'https://encrypted-tbn0.gstatic.com/images?q=tbn:ANd9GcSsjv8k9FpJH5AvquxbVyd06B5UludsXYeHuTLTGllucw&s'
image_extension = image_url[-4:]
image_path = tf.keras.utils.get_file('image'+image_extension, origin=image_url)

result, attention_plot = evaluate(image_path)
print('Prediction Caption:', ' '.join(result))
# plot_attention(image_path, result, attention_plot)
# opening the image
# Image.open(image_path)

"""# Next steps

Congrats! You've just trained an image captioning model with attention. Next, take a look at this example [Neural Machine Translation with Attention](https://www.tensorflow.org/text/tutorials/nmt_with_attention). It uses a similar architecture to translate between Spanish and English sentences. You can also experiment with training the code in this notebook on a different dataset.
"""




import time 
print("\n\nMODELLLLLLL save ")
os.system('cp log.txt old.txt')
while 1:
    time.sleep(60)