Spaces:
Running
Running
File size: 13,252 Bytes
c43652c 013edfc c43652c 3c402e6 52058f8 c43652c b304a75 4245ba9 b304a75 92c1ba9 c43652c 5e721ae b304a75 52058f8 5e721ae 92c1ba9 8ce15da 92c1ba9 c43652c 92c1ba9 c43652c 8ce15da c43652c 9b0f98b 92c1ba9 c43652c 68d3681 c43652c 5e721ae ade959f c43652c 92c1ba9 c43652c b304a75 4245ba9 b304a75 9f4c7d5 92c1ba9 c43652c be58add fb0c588 c43652c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 |
import json
import os
from dataclasses import dataclass, field
from typing import List, Optional, Dict
from PIL import Image
import pandas as pd
import streamlit as st
from huggingface_hub import HfFileSystem
@dataclass
class Field:
type: str
title: str
name: str = None
help: Optional[str] = None
children: List['Field'] = None
other_params: Optional[Dict[str, object]] = field(default_factory=lambda: {})
# Function to get user ID from URL
def get_user_id_from_url():
user_id = st.query_params.get("user_id", "")
return user_id
HF_TOKEN = os.environ.get("HF_TOKEN_WRITE")
print("is none?", HF_TOKEN is None)
hf_fs = HfFileSystem(token=HF_TOKEN)
input_repo_path = 'datasets/emvecchi/annotate-pilot'
output_repo_path = 'datasets/emvecchi/annotate-pilot'
to_annotate_file_name = 'to_annotate.csv' # CSV file to annotate
COLS_TO_SAVE = ['comment_id']
agreement_labels = ['strongly disagree', 'disagree', 'neither agree no disagree', 'agree', 'strongly agree']
quality_labels = ['very poor', 'poor', 'acceptable', 'good', 'very good']
priority_labels = ['not a priority', 'low priority', 'neutral', 'moderate priority', 'high priority']
default_labels = agreement_labels
function_choices = ['Broadening Discussion', 'Improving Comment Quality', 'Content Correction', 'Keeping Discussion on Topic', 'Organizing Discussion', 'Policing', 'Resolving Site Use Issues', 'Social Functions', 'Other (please specify)']
default_choices = function_choices
fields: List[Field] = [
Field(name="topic", type="input_col", title="**Topic:**"),
Field(name="parent_comment", type="input_col", title="**Preceeding Comment:**"),
Field(name="comment", type="input_col", title="**Comment:**"),
Field(name="image_name", type="input_col", title="**Visualization of high contributing properties:**"),
Field(type="container", title="", children=[
Field(name="to_moderate", type="radio",
title="**Moderator Intervention**: Do feel this comment/discussion would benefit from moderator intervention?"),
Field(name="actions_clear", type="select_slider",
title="**Priority**: With what level of priority would you need to interact with this comment?", other_params={'labels': priority_labels}),
]),
Field(type="container", title="**Moderation Function**", children=[
Field(name="mod_function", type="multiselect",
title="**What type of moderation function is needed here?** (Multiple selection possible)"),
]),
#Field(type="expander",
# title="Expand and fill-out this section if you see **issues in the original comment**",
# children=[
# Field(name="issues_in_comment", type="slider",
# title="Do **you see some issues** in the original comment?"),
# Field(name="moderator_spotted", type="slider",
# title="Based on the reply, has the **moderator spotted the issues** in the original comment?"),
# Field(name="reply_addresses_issues", type="slider",
# title="How well does the reply **address those issues**?")
# ]),
#Field(type="container", title="**Score the following properties of the moderator comment?**", children=[
# Field(name="neutrality", type="slider", title="Neutrality",
# help='Remain Neutral on the topic and on the Comment Substance and Commenter’s Viewpoint. The reply shouldn’t give away the opinion of the moderator on the topic or comment. '),
# # FieldDict(name="attitude", type="slider", title="Attitude", help=''),
# Field(name="clarity", type="slider", title="Clarity",
# help="Plain language, simple, clear, avoid overwhelming the user e.g. too many questions"),
# Field(name="curiosity", type="slider", title="Curiosity",
# help="Moderators should model a spirit of inquiry and a desire to learn from and understand commenter’s experience and views. Try to be interested in the bases upon which each commenter stakes his or her claims and the lines of reasoning that has led each commenter to those particular conclusions."),
# # TODO
# Field(name="bias", type="slider", title="Bias",
# help="Does the reply show some biases towards the commenter? Are there stereotypes or prejudices?"),
# Field(name="encouraging", type="slider", title="Encouraging",
# help="Welcoming, encouraging and acknowledging. Avoid Evaluative and/or Condescending Responses"),
#]),
#
Field(name="other_comments", type="text", title="Further comments: (free text)"),
]
INPUT_FIELD_DEFAULT_VALUES = {'slider': 3,
'text': None,
'textarea': None,
'checkbox': False,
'radio': False,
'select_slider': 0,
'multiselect': None}
SHOW_HELP_ICON = False
def read_data(_path):
with hf_fs.open(input_repo_path + '/' + _path) as f:
return pd.read_csv(f)
def read_saved_data():
_path = get_path()
if hf_fs.exists(output_repo_path + '/' + _path):
with hf_fs.open(output_repo_path + '/' + _path) as f:
try:
return json.load(f)
except json.JSONDecodeError as e:
print(e)
return None
# Write a remote file
def save_data(data):
hf_fs.mkdir(f"{output_repo_path}/{data['user_id']}")
with hf_fs.open(f"{output_repo_path}/{get_path()}", "w") as f:
f.write(json.dumps(data))
def get_path():
return f"{st.session_state.user_id}/{st.session_state.current_index}.json"
def display_image(image_path):
with hf_fs.open(image_path) as f:
img = Image.open(f)
st.image(img, caption='10 most contributing properties', use_column_width=True)
#################################### Streamlit App ####################################
# Function to navigate rows
def navigate(index_change):
st.session_state.current_index += index_change
print(st.session_state.current_index)
# https://discuss.streamlit.io/t/click-twice-on-button-for-changing-state/45633/2
st.rerun()
def show_field(f: Field, index: int):
if f.type not in INPUT_FIELD_DEFAULT_VALUES.keys():
match f.type:
case 'input_col':
st.write(f.title)
if f.name == 'image_name':
st.write(f.title)
image_name = st.session_state.data.iloc[index][f.name]
if image_name: # Ensure the image name is not empty
image_path = os.path.join(input_repo_path, 'images', image_name)
display_image(image_path)
else:
st.write(st.session_state.data.iloc[index][f.name])
case 'markdown':
st.markdown(f.title)
case 'expander' | 'container':
with (st.expander(f.title) if f.type == 'expander' else st.container(border=True)):
if f.type == 'container':
st.markdown(f.title)
for child in f.children:
show_field(child, index)
else:
key = f.name + str(index)
value = st.session_state.default_values[f.name] = data_collected[f.name] if data_collected else \
INPUT_FIELD_DEFAULT_VALUES[f.type]
if not SHOW_HELP_ICON:
f.title = f'**{f.title}**\n\n{f.help}' if f.help else f.title
f.help = None
match f.type:
case 'checkbox':
st.session_state.data_inputs[f.name] = st.checkbox(f.title,
key=key,
value=value, help=f.help)
case 'radio':
st.session_state.data_inputs[f.name] = st.radio(f.title,
["yes","no","other"],
key=key,
help=f.help)
case 'slider':
st.session_state.data_inputs[f.name] = st.slider(f.title,
min_value=0, max_value=6, step=1,
key=key,
value=value, help=f.help)
case 'select_slider':
labels = default_labels if not f.other_params.get('labels') else f.other_params.get('labels')
st.session_state.data_inputs[f.name] = st.select_slider(f.title,
options=[0, 25, 50, 75, 100],
format_func=lambda x: labels[x // 25],
key=key,
value=value, help=f.help)
case 'multiselect':
choices = default_choices if not f.other_params.get('choices') else f.other_params.get('choices')
st.session_state.data_inputs[f.name] = st.multiselect(f.title,
options = choices,
key=key,
help=f.help)
case 'text':
st.session_state.data_inputs[f.name] = st.text_input(f.title, key=key, value=value)
case 'textarea':
st.session_state.data_inputs[f.name] = st.text_area(f.title, key=key, value=value)
# st.set_page_config(layout='wide')
# Title of the app
st.title("Moderation Prediction")
st.markdown(
"""<style>
div[data-testid="stMarkdownContainer"] > p {
font-size: 1rem;
}
</style>
""", unsafe_allow_html=True)
st.markdown(
"""<details open>
<summary>Annotation Guidelines</summary>
some guidelines here
</details>
""", unsafe_allow_html=True)
# Load the data to annotate
if 'data' not in st.session_state:
st.session_state.data = read_data(to_annotate_file_name)
# Initialize the current index
if 'current_index' not in st.session_state:
st.session_state.current_index = -1
if st.session_state.current_index == -1:
user_id_from_url = get_user_id_from_url()
if user_id_from_url:
st.session_state.user_id = user_id_from_url
navigate(1)
else:
st.session_state.user_id = st.text_input('Please enter your user ID to proceed', value=user_id_from_url)
if st.button("Next"):
navigate(1)
elif st.session_state.current_index < len(st.session_state.data):
st.write(f"username is {st.session_state.user_id}")
# Creating the form
with st.form("feedback_form"):
index = st.session_state.current_index
data_collected = read_saved_data()
st.session_state.default_values = {}
st.session_state.data_inputs = {}
for field in fields:
if field.name not in st.session_state.data.columns:
# Field doesn't exist in input dataframe, add it with a default value
st.session_state.data_inputs[field.name] = None
show_field(field, index)
submitted = st.form_submit_button("Submit")
if submitted:
with st.spinner(text="saving"):
save_data({
'user_id': st.session_state.user_id,
'index': st.session_state.current_index,
**st.session_state.data.iloc[index][COLS_TO_SAVE].to_dict(),
**st.session_state.data_inputs
})
st.success("Feedback submitted successfully!")
navigate(1)
else:
st.write("Finished all data points!")
# Navigation buttons
if st.session_state.current_index > 0:
if st.button("Previous"):
with st.spinner(text="in progress"):
navigate(-1)
if 0 <= st.session_state.current_index < len(st.session_state.data):
st.write(f"Page {st.session_state.current_index + 1} out of {len(st.session_state.data)}")
# disable text input enter to submit
# https://discuss.streamlit.io/t/text-input-how-to-disable-press-enter-to-apply/14457/6
import streamlit.components.v1 as components
components.html(
"""
<script>
const inputs = window.parent.document.querySelectorAll('input');
inputs.forEach(input => {
input.addEventListener('keydown', function(event) {
if (event.key === 'Enter') {
event.preventDefault();
}
});
});
</script>
""",
height=0
)
st.markdown(
"""<style>
div[data-testid="InputInstructions"] {
visibility: hidden;
}
</style>""", unsafe_allow_html=True
)
|