File size: 10,368 Bytes
3b06696
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
import math
import os
from glob import glob
from pathlib import Path
from typing import Optional


import cv2
import numpy as np
import torch
from einops import rearrange, repeat
from omegaconf import OmegaConf
from PIL import Image
from torchvision.transforms import ToTensor

from scripts.util.detection.nsfw_and_watermark_dectection import \
    DeepFloydDataFiltering
from sgm.inference.helpers import embed_watermark
from sgm.util import default, instantiate_from_config
from huggingface_hub import hf_hub_download

num_frames = 25
num_steps = 30
model_config = "scripts/sampling/configs/svd_xt.yaml"
device = "cuda"

hf_hub_download(repo_id="stabilityai/stable-video-diffusion-img2vid-xt", filename="svd_xt.safetensors", local_dir="checkpoints", token=os.getenv("HF_TOKEN"))

def load_model(
    config: str,
    device: str,
    num_frames: int,
    num_steps: int,
):
    config = OmegaConf.load(config)
    if device == "cuda":
        config.model.params.conditioner_config.params.emb_models[
            0
        ].params.open_clip_embedding_config.params.init_device = device

    config.model.params.sampler_config.params.num_steps = num_steps
    config.model.params.sampler_config.params.guider_config.params.num_frames = (
        num_frames
    )
    if device == "cuda":
        with torch.device(device):
            model = instantiate_from_config(config.model).to(device).eval()
    else:
        model = instantiate_from_config(config.model).to(device).eval()

    filter = DeepFloydDataFiltering(verbose=False, device=device)
    return model, filter

model, filter = load_model(
    model_config,
    device,
    num_frames,
    num_steps,
)

def sample(
    image: Image.Image,
    num_frames: Optional[int] = 25,
    num_steps: Optional[int] = 30,
    version: str = "svd_xt",
    fps_id: int = 6,
    motion_bucket_id: int = 127,
    cond_aug: float = 0.02,
    seed: int = 23,
    decoding_t: int = 7,  # Number of frames decoded at a time! This eats most VRAM. Reduce if necessary.
):
    output_folder = str(uuid.uuid4())
    torch.manual_seed(seed)

    all_img_paths = [image]
    for input_img_path in all_img_paths:
        if image.mode == "RGBA":
            image = image.convert("RGB")
        w, h = image.size

        if h % 64 != 0 or w % 64 != 0:
            width, height = map(lambda x: x - x % 64, (w, h))
            image = image.resize((width, height))
            print(
                f"WARNING: Your image is of size {h}x{w} which is not divisible by 64. We are resizing to {height}x{width}!"
            )

        image = ToTensor()(image)
        image = image * 2.0 - 1.0

        image = image.unsqueeze(0).to(device)
        H, W = image.shape[2:]
        assert image.shape[1] == 3
        F = 8
        C = 4
        shape = (num_frames, C, H // F, W // F)
        if (H, W) != (576, 1024):
            print(
                "WARNING: The conditioning frame you provided is not 576x1024. This leads to suboptimal performance as model was only trained on 576x1024. Consider increasing `cond_aug`."
            )
        if motion_bucket_id > 255:
            print(
                "WARNING: High motion bucket! This may lead to suboptimal performance."
            )

        if fps_id < 5:
            print("WARNING: Small fps value! This may lead to suboptimal performance.")

        if fps_id > 30:
            print("WARNING: Large fps value! This may lead to suboptimal performance.")

        value_dict = {}
        value_dict["motion_bucket_id"] = motion_bucket_id
        value_dict["fps_id"] = fps_id
        value_dict["cond_aug"] = cond_aug
        value_dict["cond_frames_without_noise"] = image
        value_dict["cond_frames"] = image + cond_aug * torch.randn_like(image)
        value_dict["cond_aug"] = cond_aug

        with torch.no_grad():
            with torch.autocast(device):
                batch, batch_uc = get_batch(
                    get_unique_embedder_keys_from_conditioner(model.conditioner),
                    value_dict,
                    [1, num_frames],
                    T=num_frames,
                    device=device,
                )
                c, uc = model.conditioner.get_unconditional_conditioning(
                    batch,
                    batch_uc=batch_uc,
                    force_uc_zero_embeddings=[
                        "cond_frames",
                        "cond_frames_without_noise",
                    ],
                )

                for k in ["crossattn", "concat"]:
                    uc[k] = repeat(uc[k], "b ... -> b t ...", t=num_frames)
                    uc[k] = rearrange(uc[k], "b t ... -> (b t) ...", t=num_frames)
                    c[k] = repeat(c[k], "b ... -> b t ...", t=num_frames)
                    c[k] = rearrange(c[k], "b t ... -> (b t) ...", t=num_frames)

                randn = torch.randn(shape, device=device)

                additional_model_inputs = {}
                additional_model_inputs["image_only_indicator"] = torch.zeros(
                    2, num_frames
                ).to(device)
                additional_model_inputs["num_video_frames"] = batch["num_video_frames"]

                def denoiser(input, sigma, c):
                    return model.denoiser(
                        model.model, input, sigma, c, **additional_model_inputs
                    )

                samples_z = model.sampler(denoiser, randn, cond=c, uc=uc)
                model.en_and_decode_n_samples_a_time = decoding_t
                samples_x = model.decode_first_stage(samples_z)
                samples = torch.clamp((samples_x + 1.0) / 2.0, min=0.0, max=1.0)

                os.makedirs(output_folder, exist_ok=True)
                base_count = len(glob(os.path.join(output_folder, "*.mp4")))
                video_path = os.path.join(output_folder, f"{base_count:06d}.mp4")
                writer = cv2.VideoWriter(
                    video_path,
                    cv2.VideoWriter_fourcc(*'avc1'),
                    fps_id + 1,
                    (samples.shape[-1], samples.shape[-2]),
                )

                samples = embed_watermark(samples)
                samples = filter(samples)
                vid = (
                    (rearrange(samples, "t c h w -> t h w c") * 255)
                    .cpu()
                    .numpy()
                    .astype(np.uint8)
                )
                for frame in vid:
                    frame = cv2.cvtColor(frame, cv2.COLOR_RGB2BGR)
                    writer.write(frame)
                writer.release()
        return video_path

def get_unique_embedder_keys_from_conditioner(conditioner):
    return list(set([x.input_key for x in conditioner.embedders]))


def get_batch(keys, value_dict, N, T, device):
    batch = {}
    batch_uc = {}

    for key in keys:
        if key == "fps_id":
            batch[key] = (
                torch.tensor([value_dict["fps_id"]])
                .to(device)
                .repeat(int(math.prod(N)))
            )
        elif key == "motion_bucket_id":
            batch[key] = (
                torch.tensor([value_dict["motion_bucket_id"]])
                .to(device)
                .repeat(int(math.prod(N)))
            )
        elif key == "cond_aug":
            batch[key] = repeat(
                torch.tensor([value_dict["cond_aug"]]).to(device),
                "1 -> b",
                b=math.prod(N),
            )
        elif key == "cond_frames":
            batch[key] = repeat(value_dict["cond_frames"], "1 ... -> b ...", b=N[0])
        elif key == "cond_frames_without_noise":
            batch[key] = repeat(
                value_dict["cond_frames_without_noise"], "1 ... -> b ...", b=N[0]
            )
        else:
            batch[key] = value_dict[key]

    if T is not None:
        batch["num_video_frames"] = T

    for key in batch.keys():
        if key not in batch_uc and isinstance(batch[key], torch.Tensor):
            batch_uc[key] = torch.clone(batch[key])
    return batch, batch_uc


import gradio as gr
import uuid
def resize_image(image, output_size=(1024, 576)):

    # Calculate aspect ratios
    target_aspect = output_size[0] / output_size[1]  # Aspect ratio of the desired size
    image_aspect = image.width / image.height  # Aspect ratio of the original image

    # Resize then crop if the original image is larger
    if image_aspect > target_aspect:
        # Resize the image to match the target height, maintaining aspect ratio
        new_height = output_size[1]
        new_width = int(new_height * image_aspect)
        resized_image = image.resize((new_width, new_height), Image.ANTIALIAS)
        # Calculate coordinates for cropping
        left = (new_width - output_size[0]) / 2
        top = 0
        right = (new_width + output_size[0]) / 2
        bottom = output_size[1]
    else:
        # Resize the image to match the target width, maintaining aspect ratio
        new_width = output_size[0]
        new_height = int(new_width / image_aspect)
        resized_image = image.resize((new_width, new_height), Image.ANTIALIAS)
        # Calculate coordinates for cropping
        left = 0
        top = (new_height - output_size[1]) / 2
        right = output_size[0]
        bottom = (new_height + output_size[1]) / 2

    # Crop the image
    cropped_image = resized_image.crop((left, top, right, bottom))

    return cropped_image

with gr.Blocks() as demo:
  gr.Markdown('''# Stable Video Diffusion - Image2Video - XT
Generate 25 frames of video from a single image using SDV-XT. 
  ''')
  with gr.Column():
    image = gr.Image(label="Upload your image (it will be center cropped to 1024x576)", type="pil")
    generate_btn = gr.Button("Generate")
    with gr.Accordion("Advanced options", open=False):
      cond_aug = gr.Slider(label="Conditioning augmentation", value=0.02, minimum=0.0)
      seed = gr.Slider(label="Seed", value=42, minimum=0, maximum=int(1e9), step=1)
      #decoding_t = gr.Slider(label="Decode frames at a time", value=6, minimum=1, maximum=14, interactive=False)
      saving_fps = gr.Slider(label="Saving FPS", value=6, minimum=6, maximum=48, step=6)
  with gr.Column():
    video = gr.Video()
  image.upload(fn=resize_image, inputs=image, outputs=image)
  generate_btn.click(fn=sample, inputs=[image], outputs=video, api_name="video")

demo.launch()