File size: 12,683 Bytes
1c81243 3e5ab39 1c81243 b2d7917 1c81243 3e5ab39 1c81243 3e5ab39 1c81243 3e5ab39 1c81243 3e5ab39 1c81243 3e5ab39 1c81243 3e5ab39 1c81243 3e5ab39 1c81243 3e5ab39 1c81243 3e5ab39 1c81243 3e5ab39 1c81243 3e5ab39 1c81243 3e5ab39 1c81243 3e5ab39 1c81243 3e5ab39 1c81243 3e5ab39 1c81243 3e5ab39 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 |
import gradio as gr
from transformers import pipeline
from matplotlib.ticker import MaxNLocator
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
MODEL_NAMES = ["bert-base-uncased",
"distilbert-base-uncased", "xlm-roberta-base"]
DECIMAL_PLACES = 1
EPS = 1e-5 # to avoid /0 errors
# Example date conts
DATE_SPLIT_KEY = "DATE"
START_YEAR = 1800
STOP_YEAR = 1999
NUM_PTS = 20
DATES = np.linspace(START_YEAR, STOP_YEAR, NUM_PTS).astype(int).tolist()
DATES = [f'{d}' for d in DATES]
# Example place conts
# https://www3.weforum.org/docs/WEF_GGGR_2021.pdf
# Bottom 10 and top 10 Global Gender Gap ranked countries.
PLACE_SPLIT_KEY = "PLACE"
PLACES = [
"Afghanistan",
"Yemen",
"Iraq",
"Pakistan",
"Syria",
"Democratic Republic of Congo",
"Iran",
"Mali",
"Chad",
"Saudi Arabia",
"Switzerland",
"Ireland",
"Lithuania",
"Rwanda",
"Namibia",
"Sweden",
"New Zealand",
"Norway",
"Finland",
"Iceland"]
# Example Reddit interest consts
# in order of increasing self-identified female participation.
# See http://bburky.com/subredditgenderratios/ , Minimum subreddit size: 400000
SUBREDDITS = [
"GlobalOffensive",
"pcmasterrace",
"nfl",
"sports",
"The_Donald",
"leagueoflegends",
"Overwatch",
"gonewild",
"Futurology",
"space",
"technology",
"gaming",
"Jokes",
"dataisbeautiful",
"woahdude",
"askscience",
"wow",
"anime",
"BlackPeopleTwitter",
"politics",
"pokemon",
"worldnews",
"reddit.com",
"interestingasfuck",
"videos",
"nottheonion",
"television",
"science",
"atheism",
"movies",
"gifs",
"Music",
"trees",
"EarthPorn",
"GetMotivated",
"pokemongo",
"news",
# removing below subreddit as most of the tokens are taken up by it:
# ['ff', '##ff', '##ff', '##fu', '##u', '##u', '##u', '##u', '##u', '##u', '##u', '##u', '##u', '##u', '##u', ...]
# "fffffffuuuuuuuuuuuu",
"Fitness",
"Showerthoughts",
"OldSchoolCool",
"explainlikeimfive",
"todayilearned",
"gameofthrones",
"AdviceAnimals",
"DIY",
"WTF",
"IAmA",
"cringepics",
"tifu",
"mildlyinteresting",
"funny",
"pics",
"LifeProTips",
"creepy",
"personalfinance",
"food",
"AskReddit",
"books",
"aww",
"sex",
"relationships",
]
GENDERED_LIST = [
['he', 'she'],
['him', 'her'],
['his', 'hers'],
["himself", "herself"],
['male', 'female'],
['man', 'woman'],
['men', 'women'],
["husband", "wife"],
['father', 'mother'],
['boyfriend', 'girlfriend'],
['brother', 'sister'],
["actor", "actress"],
]
# Fire up the models
# TODO: Make it so models can be added in the future
models_paths = dict()
models = dict()
# %%
for bert_like in MODEL_NAMES:
models_paths[bert_like] = bert_like
models[bert_like] = pipeline(
"fill-mask", model=models_paths[bert_like])
def get_gendered_token_ids():
male_gendered_tokens = [list[0] for list in GENDERED_LIST]
female_gendered_tokens = [list[1] for list in GENDERED_LIST]
return male_gendered_tokens, female_gendered_tokens
def prepare_text_for_masking(input_text, mask_token, gendered_tokens, split_key):
text_w_masks_list = [
mask_token if word in gendered_tokens else word for word in input_text.split()]
num_masks = len([m for m in text_w_masks_list if m == mask_token])
text_portions = ' '.join(text_w_masks_list).split(split_key)
return text_portions, num_masks
def get_avg_prob_from_pipeline_outputs(mask_filled_text, gendered_token, num_preds):
pronoun_preds = [sum([
pronoun["score"] if pronoun["token_str"].lower(
) in gendered_token else 0.0
for pronoun in top_preds])
for top_preds in mask_filled_text
]
return round(sum(pronoun_preds) / (EPS + num_preds) * 100, DECIMAL_PLACES)
# %%
def get_figure(df, gender, n_fit=1):
df = df.set_index('x-axis')
cols = df.columns
xs = list(range(len(df)))
ys = df[cols[0]]
fig, ax = plt.subplots()
# Trying small fig due to rendering issues on HF, not on VS Code
fig.set_figheight(4)
fig.set_figwidth(8)
# find stackoverflow reference
p, C_p = np.polyfit(xs, ys, n_fit, cov=1)
t = np.linspace(min(xs)-1, max(xs)+1, 10*len(xs))
TT = np.vstack([t**(n_fit-i) for i in range(n_fit+1)]).T
# matrix multiplication calculates the polynomial values
yi = np.dot(TT, p)
C_yi = np.dot(TT, np.dot(C_p, TT.T)) # C_y = TT*C_z*TT.T
sig_yi = np.sqrt(np.diag(C_yi)) # Standard deviations are sqrt of diagonal
ax.fill_between(t, yi+sig_yi, yi-sig_yi, alpha=.25)
ax.plot(t, yi, '-')
ax.plot(df, 'ro')
ax.legend(list(df.columns))
ax.axis('tight')
# fig.canvas.draw()
ax.set_xlabel("Value injected into input text")
ax.set_title(
f"Probability of predicting {gender} pronouns.")
ax.set_ylabel(f"Softmax prob for pronouns")
ax.xaxis.set_major_locator(MaxNLocator(6))
ax.tick_params(axis='x', labelrotation=15)
return fig
# %%
def predict_gender_pronouns(
model_type,
indie_vars,
split_key,
normalizing,
input_text,
):
"""Run inference on input_text for each model type, returning df and plots of precentage
of gender pronouns predicted as female and male in each target text.
"""
model = models[model_type]
mask_token = model.tokenizer.mask_token
indie_vars_list = indie_vars.split(',')
male_gendered_tokens, female_gendered_tokens = get_gendered_token_ids()
text_segments, num_preds = prepare_text_for_masking(
input_text, mask_token, male_gendered_tokens + female_gendered_tokens, split_key)
male_pronoun_preds = []
female_pronoun_preds = []
for indie_var in indie_vars_list:
target_text = f"{indie_var}".join(text_segments)
mask_filled_text = model(target_text)
# Quick hack as realized return type based on how many MASKs in text.
if type(mask_filled_text[0]) is not list:
mask_filled_text = [mask_filled_text]
female_pronoun_preds.append(get_avg_prob_from_pipeline_outputs(
mask_filled_text,
female_gendered_tokens,
num_preds
))
male_pronoun_preds.append(get_avg_prob_from_pipeline_outputs(
mask_filled_text,
male_gendered_tokens,
num_preds
))
if normalizing:
total_gendered_probs = np.add(
female_pronoun_preds, male_pronoun_preds)
female_pronoun_preds = np.around(
np.divide(female_pronoun_preds, total_gendered_probs+EPS)*100,
decimals=DECIMAL_PLACES
)
male_pronoun_preds = np.around(
np.divide(male_pronoun_preds, total_gendered_probs+EPS)*100,
decimals=DECIMAL_PLACES
)
results_df = pd.DataFrame({'x-axis': indie_vars_list})
results_df['female_pronouns'] = female_pronoun_preds
results_df['male_pronouns'] = male_pronoun_preds
female_fig = get_figure(results_df.drop(
'male_pronouns', axis=1), 'female')
male_fig = get_figure(results_df.drop(
'female_pronouns', axis=1), 'male')
return (
target_text,
female_fig,
male_fig,
results_df,
)
# %%
title = "Causing Gender Pronouns"
description = """
## Intro
"""
place_example = [
MODEL_NAMES[0],
', '.join(PLACES),
'PLACE',
"False",
'Born in PLACE, she was a teacher.'
]
date_example = [
MODEL_NAMES[0],
', '.join(DATES),
'DATE',
"False",
'Born in DATE, she was a doctor.'
]
subreddit_example = [
MODEL_NAMES[2],
', '.join(SUBREDDITS),
'SUBREDDIT',
"False",
'I saw on r/SUBREDDIT that she is a hacker.'
]
def date_fn():
return date_example
def place_fn():
return place_example
def reddit_fn():
return subreddit_example
# %%
demo = gr.Blocks()
with demo:
gr.Markdown("## Hunt for spurious correlations in our LLMs.")
gr.Markdown("Although genders are relatively evenly distributed across time, place and interests, there are also known gender disparities in terms of access to resources. We suggest that this access disparity can result in dataset selection bias, causing models to learn a surprising range of spurious associations.")
gr.Markdown("These spurious associations are often considered undesirable, as they do not match our intuition about the real-world domain from which we derive samples for inference-time prediction.")
gr.Markdown("Selection bias of samples into datasets is a zero-sum-game, with even our high quality datasets forced to trade off one for another, thus inducing selection bias into the learned associations of the model.")
gr.Markdown("One intuitive way to see the impact that changing one variable may have upon another is to look for a dose-response relationship, in which a larger intervention in the treatment (the value in text form injected in the otherwise unchanged text sample) produces a larger response in the output (the softmax probability of a gendered pronoun). Specifically, below are examples of sweeping through a spectrum of place, date and subreddit interest (we encourage you to try your own).")
gr.Markdown("This requires a spectrum of less to more gender-equal values for each covariate. For date, it’s easy to just use time itself, as gender equality has generally improved with time, so we picked years ranging from 1800 - 1999. For place we used the bottom and top 10 Global Gender Gap ranked countries. And for subreddit, we use subreddit name ordered by subreddits that have an increasingly larger percentage of self-reported female commenters.")
#gr.Markdown("Please see a better explanation in another [Space](https://huggingface.co/spaces/emilylearning/causing_gender_pronouns_two).")
with gr.Row():
x_axis = gr.Textbox(
lines=5,
label="Pick a spectrum of values for text injection and x-axis",
)
with gr.Row():
model_name = gr.Radio(
MODEL_NAMES,
type="value",
label="Pick a BERT-like model.",
)
place_holder = gr.Textbox(
label="Special token used in input text that will be replaced with the above spectrum of values.",
type="index",
)
to_normalize = gr.Dropdown(
["False", "True"],
label="Normalize?",
type="index",
)
with gr.Row():
input_text = gr.Textbox(
lines=5,
label="Input Text: Sentence about a single person using some gendered pronouns to refer to them.",
)
with gr.Row():
sample_text = gr.Textbox(
type="auto", label="Output text: Sample of text fed to model")
with gr.Row():
female_fig = gr.Plot(
type="auto", label="Plot of softmax probability pronouns predicted female.")
male_fig = gr.Plot(
type="auto", label="Plot of softmax probability pronouns predicted male.")
with gr.Row():
df = gr.Dataframe(
show_label=True,
overflow_row_behaviour="show_ends",
label="Table of softmax probability for pronouns predictions",
)
gr.Markdown("X-axis sorted by older to more recent dates:")
place_gen = gr.Button('Populate fields with a location example')
gr.Markdown("X-axis sorted by bottom 10 and top 10 Global Gender Gap ranked countries:")
date_gen = gr.Button('Populate fields with a date example')
gr.Markdown("X-axis sorted in order of increasing self-identified female participation (see [bburky demo](http://bburky.com/subredditgenderratios/)): ")
subreddit_gen = gr.Button('Populate fields with a subreddit example')
with gr.Row():
date_gen.click(date_fn, inputs=[], outputs=[model_name,
x_axis, place_holder, to_normalize, input_text])
place_gen.click(place_fn, inputs=[], outputs=[
model_name, x_axis, place_holder, to_normalize, input_text])
subreddit_gen.click(reddit_fn, inputs=[], outputs=[
model_name, x_axis, place_holder, to_normalize, input_text])
with gr.Row():
btn = gr.Button("Hit submit")
btn.click(
predict_gender_pronouns,
inputs=[model_name, x_axis, place_holder,
to_normalize, input_text],
outputs=[sample_text, female_fig, male_fig, df])
demo.launch(debug=True)
# %%
|