File size: 12,683 Bytes
1c81243
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3e5ab39
1c81243
 
 
 
 
 
b2d7917
 
 
1c81243
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3e5ab39
1c81243
3e5ab39
1c81243
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3e5ab39
1c81243
 
 
 
 
 
 
3e5ab39
1c81243
 
 
 
 
 
 
 
3e5ab39
1c81243
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3e5ab39
 
 
 
1c81243
3e5ab39
 
 
 
1c81243
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3e5ab39
1c81243
 
3e5ab39
1c81243
 
3e5ab39
1c81243
 
 
3e5ab39
1c81243
3e5ab39
1c81243
3e5ab39
1c81243
3e5ab39
1c81243
 
 
 
 
3e5ab39
1c81243
 
 
3e5ab39
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
import gradio as gr
from transformers import pipeline
from matplotlib.ticker import MaxNLocator
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt

MODEL_NAMES = ["bert-base-uncased",
               "distilbert-base-uncased", "xlm-roberta-base"]

DECIMAL_PLACES = 1
EPS = 1e-5  # to avoid /0 errors

# Example date conts
DATE_SPLIT_KEY = "DATE"
START_YEAR = 1800
STOP_YEAR = 1999
NUM_PTS = 20
DATES = np.linspace(START_YEAR, STOP_YEAR, NUM_PTS).astype(int).tolist()
DATES = [f'{d}' for d in DATES]

# Example place conts
# https://www3.weforum.org/docs/WEF_GGGR_2021.pdf
# Bottom 10 and top 10 Global Gender Gap ranked countries.
PLACE_SPLIT_KEY = "PLACE"
PLACES = [
    "Afghanistan",
    "Yemen",
    "Iraq",
    "Pakistan",
    "Syria",
    "Democratic Republic of Congo",
    "Iran",
    "Mali",
    "Chad",
    "Saudi Arabia",
    "Switzerland",
    "Ireland",
    "Lithuania",
    "Rwanda",
    "Namibia",
    "Sweden",
    "New Zealand",
    "Norway",
    "Finland",
    "Iceland"]


# Example Reddit interest consts
# in order of increasing self-identified female participation.
# See http://bburky.com/subredditgenderratios/ , Minimum subreddit size: 400000
SUBREDDITS = [
    "GlobalOffensive",
    "pcmasterrace",
    "nfl",
    "sports",
    "The_Donald",
    "leagueoflegends",
    "Overwatch",
    "gonewild",
    "Futurology",
    "space",
    "technology",
    "gaming",
    "Jokes",
    "dataisbeautiful",
    "woahdude",
    "askscience",
    "wow",
    "anime",
    "BlackPeopleTwitter",
    "politics",
    "pokemon",
    "worldnews",
    "reddit.com",
    "interestingasfuck",
    "videos",
    "nottheonion",
    "television",
    "science",
    "atheism",
    "movies",
    "gifs",
    "Music",
    "trees",
    "EarthPorn",
    "GetMotivated",
    "pokemongo",
    "news",
    # removing below subreddit as most of the tokens are taken up by it:
    # ['ff', '##ff', '##ff', '##fu', '##u', '##u', '##u', '##u', '##u', '##u', '##u', '##u', '##u', '##u', '##u', ...]
    # "fffffffuuuuuuuuuuuu",
    "Fitness",
    "Showerthoughts",
    "OldSchoolCool",
    "explainlikeimfive",
    "todayilearned",
    "gameofthrones",
    "AdviceAnimals",
    "DIY",
    "WTF",
    "IAmA",
    "cringepics",
    "tifu",
    "mildlyinteresting",
    "funny",
    "pics",
    "LifeProTips",
    "creepy",
    "personalfinance",
    "food",
    "AskReddit",
    "books",
    "aww",
    "sex",
    "relationships",
]

GENDERED_LIST = [
    ['he', 'she'],
    ['him', 'her'],
    ['his', 'hers'],
    ["himself", "herself"],
    ['male', 'female'],
    ['man', 'woman'],
    ['men', 'women'],
    ["husband", "wife"],
    ['father', 'mother'],
    ['boyfriend', 'girlfriend'],
    ['brother', 'sister'],
    ["actor", "actress"],
]


# Fire up the models
# TODO: Make it so models can be added in the future
models_paths = dict()
models = dict()


# %%
for bert_like in MODEL_NAMES:
    models_paths[bert_like] = bert_like
    models[bert_like] = pipeline(
        "fill-mask", model=models_paths[bert_like])


def get_gendered_token_ids():
    male_gendered_tokens = [list[0] for list in GENDERED_LIST]
    female_gendered_tokens = [list[1] for list in GENDERED_LIST]

    return male_gendered_tokens, female_gendered_tokens


def prepare_text_for_masking(input_text, mask_token, gendered_tokens, split_key):
    text_w_masks_list = [
        mask_token if word in gendered_tokens else word for word in input_text.split()]
    num_masks = len([m for m in text_w_masks_list if m == mask_token])

    text_portions = ' '.join(text_w_masks_list).split(split_key)
    return text_portions, num_masks


def get_avg_prob_from_pipeline_outputs(mask_filled_text, gendered_token, num_preds):
    pronoun_preds = [sum([
        pronoun["score"] if pronoun["token_str"].lower(
        ) in gendered_token else 0.0
        for pronoun in top_preds])
        for top_preds in mask_filled_text
    ]
    return round(sum(pronoun_preds) / (EPS + num_preds) * 100, DECIMAL_PLACES)

# %%
def get_figure(df, gender, n_fit=1):
    df = df.set_index('x-axis')
    cols = df.columns
    xs = list(range(len(df)))
    ys = df[cols[0]]
    fig, ax = plt.subplots()
    # Trying small fig due to rendering issues on HF, not on VS Code
    fig.set_figheight(4)
    fig.set_figwidth(8) 

    # find stackoverflow reference
    p, C_p = np.polyfit(xs, ys, n_fit, cov=1)
    t = np.linspace(min(xs)-1, max(xs)+1,  10*len(xs))
    TT = np.vstack([t**(n_fit-i) for i in range(n_fit+1)]).T

    # matrix multiplication calculates the polynomial values
    yi = np.dot(TT, p)
    C_yi = np.dot(TT, np.dot(C_p, TT.T))  # C_y = TT*C_z*TT.T
    sig_yi = np.sqrt(np.diag(C_yi))  # Standard deviations are sqrt of diagonal

    ax.fill_between(t, yi+sig_yi, yi-sig_yi, alpha=.25)
    ax.plot(t, yi, '-')
    ax.plot(df, 'ro')
    ax.legend(list(df.columns))

    ax.axis('tight')

    # fig.canvas.draw()

    ax.set_xlabel("Value injected into input text")
    ax.set_title(
        f"Probability of predicting {gender} pronouns.")
    ax.set_ylabel(f"Softmax prob for pronouns")
    ax.xaxis.set_major_locator(MaxNLocator(6))
    ax.tick_params(axis='x', labelrotation=15)
    return fig


# %%
def predict_gender_pronouns(
    model_type,
    indie_vars,
    split_key,
    normalizing,
    input_text,
):
    """Run inference on input_text for each model type, returning df and plots of precentage
    of gender pronouns predicted as female and male in each target text.
    """
    model = models[model_type]
    mask_token = model.tokenizer.mask_token

    indie_vars_list = indie_vars.split(',')

    male_gendered_tokens, female_gendered_tokens = get_gendered_token_ids()

    text_segments, num_preds = prepare_text_for_masking(
        input_text, mask_token, male_gendered_tokens + female_gendered_tokens, split_key)

    male_pronoun_preds = []
    female_pronoun_preds = []
    for indie_var in indie_vars_list:

        target_text = f"{indie_var}".join(text_segments)
        mask_filled_text = model(target_text)
        # Quick hack as realized return type based on how many MASKs in text.
        if type(mask_filled_text[0]) is not list:
            mask_filled_text = [mask_filled_text]

        female_pronoun_preds.append(get_avg_prob_from_pipeline_outputs(
            mask_filled_text,
            female_gendered_tokens,
            num_preds
        ))
        male_pronoun_preds.append(get_avg_prob_from_pipeline_outputs(
            mask_filled_text,
            male_gendered_tokens,
            num_preds
        ))

    if normalizing:
        total_gendered_probs = np.add(
            female_pronoun_preds, male_pronoun_preds)
        female_pronoun_preds = np.around(
            np.divide(female_pronoun_preds, total_gendered_probs+EPS)*100,
            decimals=DECIMAL_PLACES
        )
        male_pronoun_preds = np.around(
            np.divide(male_pronoun_preds, total_gendered_probs+EPS)*100,
            decimals=DECIMAL_PLACES
        )

    results_df = pd.DataFrame({'x-axis': indie_vars_list})
    results_df['female_pronouns'] = female_pronoun_preds
    results_df['male_pronouns'] = male_pronoun_preds
    female_fig = get_figure(results_df.drop(
        'male_pronouns', axis=1), 'female')
    male_fig = get_figure(results_df.drop(
        'female_pronouns', axis=1), 'male')

    return (
        target_text,
        female_fig,
        male_fig,
        results_df,
    )

# %%
title = "Causing Gender Pronouns"
description = """
## Intro 

"""

place_example = [
    MODEL_NAMES[0],
    ', '.join(PLACES),
    'PLACE',
    "False",
    'Born in PLACE, she was a teacher.'
]

date_example = [
    MODEL_NAMES[0],
    ', '.join(DATES),
    'DATE',
    "False",
    'Born in DATE, she was a doctor.'
]


subreddit_example = [
    MODEL_NAMES[2],
    ', '.join(SUBREDDITS),
    'SUBREDDIT',
    "False",
    'I saw on r/SUBREDDIT that she is a hacker.'
]


def date_fn():
    return date_example
def place_fn():
    return place_example
def reddit_fn():
    return subreddit_example


# %%
demo = gr.Blocks()
with demo:
    gr.Markdown("## Hunt for spurious correlations in our LLMs.")
    gr.Markdown("Although genders are relatively evenly distributed across time, place and interests, there are also known gender disparities in terms of access to resources. We suggest that this access disparity can result in dataset selection bias, causing models to learn a surprising range of spurious associations.")
    gr.Markdown("These spurious associations are often considered undesirable, as they do not match our intuition about the real-world domain from which we derive samples for inference-time prediction.")
    gr.Markdown("Selection bias of samples into datasets is a zero-sum-game, with even our high quality datasets forced to trade off one for another, thus inducing selection bias into the learned associations of the model.")


    gr.Markdown("One intuitive way to see the impact that changing one variable may have upon another is to look for a dose-response relationship, in which a larger intervention in the treatment (the value in text form injected in the otherwise unchanged text sample) produces a larger response in the output (the softmax probability of a gendered pronoun). Specifically, below are examples of sweeping through a spectrum of place, date and subreddit interest (we encourage you to try your own).")
    
    gr.Markdown("This requires a spectrum of less to more gender-equal values for each covariate. For date, it’s easy to just use time itself, as gender equality has generally improved with time, so we picked years ranging from 1800 - 1999. For place we used the bottom and top 10 Global Gender Gap ranked countries. And for subreddit, we use subreddit name ordered by subreddits that have an increasingly larger percentage of self-reported female commenters.")
    #gr.Markdown("Please see a better explanation in another [Space](https://huggingface.co/spaces/emilylearning/causing_gender_pronouns_two).")
    
    with gr.Row():
        x_axis = gr.Textbox(
            lines=5,
            label="Pick a spectrum of values for text injection and x-axis",
        )
    with gr.Row():
        model_name = gr.Radio(
            MODEL_NAMES,
            type="value",
            label="Pick a BERT-like model.",
        )
        place_holder = gr.Textbox(
            label="Special token used in input text that will be replaced with the above spectrum of values.",
            type="index",
        )
        to_normalize = gr.Dropdown(
            ["False", "True"],
            label="Normalize?",
            type="index",
        )
    with gr.Row():
        input_text = gr.Textbox(
            lines=5,
            label="Input Text: Sentence about a single person using some gendered pronouns to refer to them.",
        )
    with gr.Row():
        sample_text = gr.Textbox(
            type="auto", label="Output text: Sample of text fed to model")
    with gr.Row():
        female_fig = gr.Plot(
            type="auto", label="Plot of softmax probability pronouns predicted female.")
        male_fig = gr.Plot(
            type="auto", label="Plot of softmax probability pronouns predicted male.")
    with gr.Row():
        df = gr.Dataframe(
            show_label=True,
            overflow_row_behaviour="show_ends",
            label="Table of softmax probability for pronouns predictions",
        )
    gr.Markdown("X-axis sorted by older to more recent dates:")
    place_gen = gr.Button('Populate fields with a location example')

    gr.Markdown("X-axis sorted by bottom 10 and top 10 Global Gender Gap ranked countries:")
    date_gen = gr.Button('Populate fields with a date example')

    gr.Markdown("X-axis sorted in order of increasing self-identified female participation (see [bburky demo](http://bburky.com/subredditgenderratios/)): ")
    subreddit_gen = gr.Button('Populate fields with a subreddit example')

    with gr.Row():

        date_gen.click(date_fn, inputs=[], outputs=[model_name,
                       x_axis, place_holder, to_normalize, input_text])
        place_gen.click(place_fn, inputs=[], outputs=[
                        model_name, x_axis, place_holder, to_normalize, input_text])
        subreddit_gen.click(reddit_fn, inputs=[], outputs=[
                            model_name, x_axis, place_holder, to_normalize, input_text])
    with gr.Row():
        btn = gr.Button("Hit submit")
        btn.click(
            predict_gender_pronouns,
            inputs=[model_name, x_axis, place_holder,
                    to_normalize, input_text],
            outputs=[sample_text, female_fig, male_fig, df])

demo.launch(debug=True)


# %%