File size: 16,671 Bytes
e4f334a 1c81243 22ca035 e4f334a 1c81243 e4f334a 1c81243 e4f334a 1c81243 e4f334a 1c81243 e4f334a 1c81243 3e5ab39 e4f334a 1c81243 b2d7917 a1d9fca e4f334a 1c81243 e4f334a 1c81243 e4f334a 1c81243 e4f334a 1c81243 a1d9fca 1c81243 e4f334a 1c81243 e4f334a 1c81243 e4f334a 1c81243 e4f334a 1c81243 e4f334a 1c81243 e4f334a 3e5ab39 1c81243 e4f334a 1c81243 e4f334a 3e5ab39 1c81243 e4f334a 1c81243 e4f334a 3e5ab39 1c81243 e4f334a 1c81243 e4f334a 1c81243 e4f334a 1c81243 e4f334a 1c81243 e4f334a a1d9fca 3e5ab39 a1d9fca 3e5ab39 e4f334a 1c81243 e4f334a 1c81243 e4f334a 1c81243 e4f334a 1c81243 e4f334a 1c81243 e4f334a 1c81243 e4f334a 1c81243 e4f334a 1c81243 e4f334a 1c81243 e4f334a 1c81243 e4f334a 1c81243 e4f334a 1c81243 a1d9fca 1c81243 3e5ab39 e4f334a 1c81243 e4f334a 1c81243 e4f334a 1c81243 e4f334a 1c81243 e4f334a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 |
# %%
import gradio as gr
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
import random
from matplotlib.ticker import MaxNLocator
from transformers import pipeline
MODEL_NAMES = ["bert-base-uncased",
"distilbert-base-uncased", "xlm-roberta-base"]
OWN_MODEL_NAME = 'add-your-own'
DECIMAL_PLACES = 1
EPS = 1e-5 # to avoid /0 errors
# Example date conts
DATE_SPLIT_KEY = "DATE"
START_YEAR = 1801
STOP_YEAR = 1999
NUM_PTS = 20
DATES = np.linspace(START_YEAR, STOP_YEAR, NUM_PTS).astype(int).tolist()
DATES = [f'{d}' for d in DATES]
# Example place conts
# https://www3.weforum.org/docs/WEF_GGGR_2021.pdf
# Bottom 10 and top 10 Global Gender Gap ranked countries.
PLACE_SPLIT_KEY = "PLACE"
PLACES = [
"Afghanistan",
"Yemen",
"Iraq",
"Pakistan",
"Syria",
"Democratic Republic of Congo",
"Iran",
"Mali",
"Chad",
"Saudi Arabia",
"Switzerland",
"Ireland",
"Lithuania",
"Rwanda",
"Namibia",
"Sweden",
"New Zealand",
"Norway",
"Finland",
"Iceland"]
# Example Reddit interest consts
# in order of increasing self-identified female participation.
# See http://bburky.com/subredditgenderratios/ , Minimum subreddit size: 400000
SUBREDDITS = [
"GlobalOffensive",
"pcmasterrace",
"nfl",
"sports",
"The_Donald",
"leagueoflegends",
"Overwatch",
"gonewild",
"Futurology",
"space",
"technology",
"gaming",
"Jokes",
"dataisbeautiful",
"woahdude",
"askscience",
"wow",
"anime",
"BlackPeopleTwitter",
"politics",
"pokemon",
"worldnews",
"reddit.com",
"interestingasfuck",
"videos",
"nottheonion",
"television",
"science",
"atheism",
"movies",
"gifs",
"Music",
"trees",
"EarthPorn",
"GetMotivated",
"pokemongo",
"news",
# removing below subreddit as most of the tokens are taken up by it:
# ['ff', '##ff', '##ff', '##fu', '##u', '##u', '##u', '##u', '##u', '##u', '##u', '##u', '##u', '##u', '##u', ...]
# "fffffffuuuuuuuuuuuu",
"Fitness",
"Showerthoughts",
"OldSchoolCool",
"explainlikeimfive",
"todayilearned",
"gameofthrones",
"AdviceAnimals",
"DIY",
"WTF",
"IAmA",
"cringepics",
"tifu",
"mildlyinteresting",
"funny",
"pics",
"LifeProTips",
"creepy",
"personalfinance",
"food",
"AskReddit",
"books",
"aww",
"sex",
"relationships",
]
GENDERED_LIST = [
['he', 'she'],
['him', 'her'],
['his', 'hers'],
["himself", "herself"],
['male', 'female'],
['man', 'woman'],
['men', 'women'],
["husband", "wife"],
['father', 'mother'],
['boyfriend', 'girlfriend'],
['brother', 'sister'],
["actor", "actress"],
]
# %%
# Fire up the models
models = dict()
for bert_like in MODEL_NAMES:
models[bert_like] = pipeline("fill-mask", model=bert_like)
# %%
def get_gendered_token_ids():
male_gendered_tokens = [list[0] for list in GENDERED_LIST]
female_gendered_tokens = [list[1] for list in GENDERED_LIST]
return male_gendered_tokens, female_gendered_tokens
def prepare_text_for_masking(input_text, mask_token, gendered_tokens, split_key):
text_w_masks_list = [
mask_token if word in gendered_tokens else word for word in input_text.split()]
num_masks = len([m for m in text_w_masks_list if m == mask_token])
text_portions = ' '.join(text_w_masks_list).split(split_key)
return text_portions, num_masks
def get_avg_prob_from_pipeline_outputs(mask_filled_text, gendered_token, num_preds):
pronoun_preds = [sum([
pronoun["score"] if pronoun["token_str"].lower(
) in gendered_token else 0.0
for pronoun in top_preds])
for top_preds in mask_filled_text
]
return round(sum(pronoun_preds) / (EPS + num_preds) * 100, DECIMAL_PLACES)
# %%
def get_figure(df, gender, n_fit=1):
df = df.set_index('x-axis')
cols = df.columns
xs = list(range(len(df)))
ys = df[cols[0]]
fig, ax = plt.subplots()
# Trying small fig due to rendering issues on HF, not on VS Code
fig.set_figheight(3)
fig.set_figwidth(9)
# find stackoverflow reference
p, C_p = np.polyfit(xs, ys, n_fit, cov=1)
t = np.linspace(min(xs)-1, max(xs)+1, 10*len(xs))
TT = np.vstack([t**(n_fit-i) for i in range(n_fit+1)]).T
# matrix multiplication calculates the polynomial values
yi = np.dot(TT, p)
C_yi = np.dot(TT, np.dot(C_p, TT.T)) # C_y = TT*C_z*TT.T
sig_yi = np.sqrt(np.diag(C_yi)) # Standard deviations are sqrt of diagonal
ax.fill_between(t, yi+sig_yi, yi-sig_yi, alpha=.25)
ax.plot(t, yi, '-')
ax.plot(df, 'ro')
ax.legend(list(df.columns))
ax.axis('tight')
ax.set_xlabel("Value injected into input text")
ax.set_title(
f"Probability of predicting {gender} pronouns.")
ax.set_ylabel(f"Softmax prob for pronouns")
ax.xaxis.set_major_locator(MaxNLocator(6))
ax.tick_params(axis='x', labelrotation=5)
return fig
# %%
def predict_gender_pronouns(
model_name,
own_model_name,
indie_vars,
split_key,
normalizing,
n_fit,
input_text,
):
"""Run inference on input_text for each model type, returning df and plots of percentage
of gender pronouns predicted as female and male in each target text.
"""
if model_name not in MODEL_NAMES:
model = pipeline("fill-mask", model=own_model_name)
else:
model = models[model_name]
mask_token = model.tokenizer.mask_token
indie_vars_list = indie_vars.split(',')
male_gendered_tokens, female_gendered_tokens = get_gendered_token_ids()
text_segments, num_preds = prepare_text_for_masking(
input_text, mask_token, male_gendered_tokens + female_gendered_tokens, split_key)
male_pronoun_preds = []
female_pronoun_preds = []
for indie_var in indie_vars_list:
target_text = f"{indie_var}".join(text_segments)
mask_filled_text = model(target_text)
# Quick hack as realized return type based on how many MASKs in text.
if type(mask_filled_text[0]) is not list:
mask_filled_text = [mask_filled_text]
female_pronoun_preds.append(get_avg_prob_from_pipeline_outputs(
mask_filled_text,
female_gendered_tokens,
num_preds
))
male_pronoun_preds.append(get_avg_prob_from_pipeline_outputs(
mask_filled_text,
male_gendered_tokens,
num_preds
))
if normalizing:
total_gendered_probs = np.add(
female_pronoun_preds, male_pronoun_preds)
female_pronoun_preds = np.around(
np.divide(female_pronoun_preds, total_gendered_probs+EPS)*100,
decimals=DECIMAL_PLACES
)
male_pronoun_preds = np.around(
np.divide(male_pronoun_preds, total_gendered_probs+EPS)*100,
decimals=DECIMAL_PLACES
)
results_df = pd.DataFrame({'x-axis': indie_vars_list})
results_df['female_pronouns'] = female_pronoun_preds
results_df['male_pronouns'] = male_pronoun_preds
female_fig = get_figure(results_df.drop(
'male_pronouns', axis=1), 'female', n_fit,)
male_fig = get_figure(results_df.drop(
'female_pronouns', axis=1), 'male', n_fit,)
display_text = f"{random.choice(indie_vars_list)}".join(text_segments)
return (
display_text,
female_fig,
male_fig,
results_df,
)
# %%
title = "Causing Gender Pronouns"
description = """
## Intro
"""
place_example = [
MODEL_NAMES[0],
'',
', '.join(PLACES),
'PLACE',
"False",
1,
'Born in PLACE, she was a teacher.'
]
date_example = [
MODEL_NAMES[0],
'',
', '.join(DATES),
'DATE',
"False",
3,
'Born in DATE, she was a doctor.'
]
subreddit_example = [
MODEL_NAMES[2],
'',
', '.join(SUBREDDITS),
'SUBREDDIT',
"False",
1,
'I saw in r/SUBREDDIT that she is a hacker.'
]
own_model_example = [
OWN_MODEL_NAME,
'lordtt13/COVID-SciBERT',
', '.join(DATES),
'DATE',
"False",
3,
'Ending her professorship in DATE, she was instrumental in developing the COVID vaccine.'
]
def date_fn():
return date_example
def place_fn():
return place_example
def reddit_fn():
return subreddit_example
def your_fn():
return own_model_example
# %%
demo = gr.Blocks()
with demo:
gr.Markdown("## Spurious Correlation Evaluation for our LLMs")
gr.Markdown("Although genders are relatively evenly distributed across time, place and interests, there are also known gender disparities in terms of access to resources. Here we demonstrate that this access disparity can result in dataset selection bias, causing models to learn a surprising range of spurious associations.")
gr.Markdown("These spurious associations are often considered undesirable, as they do not match our intuition about the real-world domain from which we derive samples for inference-time prediction.")
gr.Markdown("Selection of samples into datasets is a zero-sum-game, with even our high quality datasets forced to trade off one for another, thus inducing selection bias into the learned associations of the model.")
gr.Markdown("### Data Generating Process")
gr.Markdown("To pick values below that are most likely to cause spurious correlations, it helps to make some assumptions about the training datasets' likely data generating process, and where selection bias may come in.")
gr.Markdown("A plausible data generating processes for both Wikipedia and Reddit sourced data is shown as a DAG below. These DAGs are prone to collider bias when conditioning on `access`. In other words, although in real life `place`, `date`, (subreddit) `interest` and gender are all unconditionally independent, when we condition on their common effect, `access`, they become unconditionally dependent. Composing a dataset often requires the dataset maintainers to condition on `access`. Thus LLMs learn these dataset induced dependencies, appearing to us as spurious correlations.")
gr.Markdown("""
<center>
<img src="https://www.dropbox.com/s/f0numpllywdd271/combo_dag_block_party.png?raw=1"
alt="DAG of possible data generating process for datasets used in training some of our LLMs.">
</center>
""")
gr.Markdown("There may be misassumptions in our DAG above, which you can explore below.")
gr.Markdown("Or you may be interested in applying this demo to your own model of interest. This demo _should_ work with any Hugging Face model that supports the [fill-mask](https://huggingface.co/models?pipeline_tag=fill-mask) task.")
gr.Markdown("### Dose-response Relationship")
gr.Markdown("One intuitive way to see the impact that changing one variable may have upon another is to look for a dose-response relationship, in which a larger intervention in the treatment (the value in text form injected in the otherwise unchanged text sample) produces a larger response in the output (the softmax probability of a gendered pronoun).")
gr.Markdown("### This Demo")
gr.Markdown("This type of plot requires a range of values along which we may see a spectrum of gender representation (or misrepresentation) in our datasets.")
gr.Markdown("Click on one of the examples below (where we sweep through a spectrum of `places`, `date` and `subreddit` interest) to get an idea of whats intended here. Then try your own!")
with gr.Row():
gr.Markdown("X-axis sorted by older to more recent dates:")
place_gen = gr.Button('Country example')
gr.Markdown(
"X-axis sorted by bottom 10 and top 10 [Global Gender Gap](https://www3.weforum.org/docs/WEF_GGGR_2021.pdf) ranked countries by World Economic Forum in 2021:")
date_gen = gr.Button('Date example')
gr.Markdown(
"X-axis sorted in order of increasing self-identified female participation (see [bburky demo](http://bburky.com/subredditgenderratios/)): ")
subreddit_gen = gr.Button('Subreddit example')
gr.Markdown("Date example with your own model loaded! (We recommend you try after seeing how others work. It can take a while to load new model.)")
your_gen = gr.Button('Your model example')
with gr.Row():
x_axis = gr.Textbox(
lines=5,
label="Pick a spectrum of comma separated values for text injection and x-axis",
)
gr.Markdown(
"Pick a pre-loaded BERT-family model of interest, or add another Hugging Face model that supports the [fill-mask](https://huggingface.co/models?pipeline_tag=fill-mask) task (this may take some time to load).")
with gr.Row():
model_name = gr.Radio(
MODEL_NAMES + [OWN_MODEL_NAME],
type="value",
label="Model: Pick a BERT-like model.",
)
own_model_name = gr.Textbox(
label="If you selected an 'add-your-own' model, put your models Hugging Face pipeline name here. We think it should work with any model that supports the fill-mask task.",
)
gr.Markdown(
"We are able to test the pre-trained LLMs without any modification to the models, as the gender-pronoun prediction task is simply a special case of the masked language modeling (MLM) task, with which all these models were pre-trained. Rather than random masking, the gender-pronoun prediction task masks only non-gender-neutral terms (listed in prior [Space](https://huggingface.co/spaces/emilylearning/causing_gender_pronouns_two)).")
gr.Markdown("For the pre-trained LLMs the final prediction is a softmax over the entire tokenizer's vocabulary, from which we sum up the portion of the probability mass from the top five prediction words that are gendered terms. Pick if you want to the predictions normalied to these gendered terms only.")
gr.Markdown("Also tell the demo what special token you will use in your input text, that you would like replaced with the spectrum of values you listed above, and the degree of polynomial fit used for high-lighting possible dose response trend ")
with gr.Row():
to_normalize = gr.Dropdown(
["False", "True"],
label="Normalize model's predictions to only the gendered ones?",
type="index",
)
place_holder = gr.Textbox(
label="Special token place-holder that used in input text that will be replaced with the above spectrum of values.",
)
n_fit = gr.Dropdown(
list(range(1, 5)),
label="Degree of polynomial fit for high-lighting possible dose response trend",
type="value",
)
gr.Markdown(
"Finally, add input text that includes at least one gendered pronouns and one place-holder token specified above.")
with gr.Row():
input_text = gr.Textbox(
lines=3,
label="Input Text: Sentence that includes gendered pronouns and your place-holder token specified above.",
)
gr.Markdown("### Outputs!")
gr.Markdown("Scroll down and 'Hit Submit'!")
with gr.Row():
sample_text = gr.Textbox(
type="auto", label="Output text: Sample of text fed to model")
with gr.Row():
female_fig = gr.Plot(type="auto")
male_fig = gr.Plot(type="auto")
with gr.Row():
df = gr.Dataframe(
show_label=True,
overflow_row_behaviour="show_ends",
label="Table of softmax probability for pronouns predictions",
)
with gr.Row():
date_gen.click(date_fn, inputs=[], outputs=[model_name, own_model_name,
x_axis, place_holder, to_normalize, n_fit, input_text])
place_gen.click(place_fn, inputs=[], outputs=[
model_name, own_model_name, x_axis, place_holder, to_normalize, n_fit, input_text])
subreddit_gen.click(reddit_fn, inputs=[], outputs=[
model_name, own_model_name, x_axis, place_holder, to_normalize, n_fit, input_text])
your_gen.click(your_fn, inputs=[], outputs=[
model_name, own_model_name, x_axis, place_holder, to_normalize, n_fit, input_text])
with gr.Row():
btn = gr.Button("Hit submit")
btn.click(
predict_gender_pronouns,
inputs=[model_name, own_model_name, x_axis, place_holder,
to_normalize, n_fit, input_text],
outputs=[sample_text, female_fig, male_fig, df])
demo.launch(debug=True) |