File size: 16,671 Bytes
e4f334a
1c81243
 
22ca035
 
 
 
 
e4f334a
1c81243
 
e4f334a
1c81243
 
 
 
 
 
e4f334a
1c81243
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e4f334a
1c81243
 
 
e4f334a
 
1c81243
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3e5ab39
e4f334a
 
1c81243
 
 
 
 
 
b2d7917
a1d9fca
e4f334a
1c81243
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e4f334a
1c81243
 
 
 
 
e4f334a
 
1c81243
 
 
e4f334a
1c81243
 
a1d9fca
1c81243
 
e4f334a
 
 
 
 
1c81243
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e4f334a
1c81243
e4f334a
 
1c81243
 
e4f334a
1c81243
 
 
 
 
e4f334a
1c81243
 
 
 
 
 
 
 
 
e4f334a
3e5ab39
1c81243
 
e4f334a
1c81243
 
 
 
 
e4f334a
3e5ab39
1c81243
 
e4f334a
1c81243
 
 
 
 
 
e4f334a
3e5ab39
1c81243
 
e4f334a
 
 
 
 
 
 
 
 
 
 
 
1c81243
 
 
 
 
e4f334a
 
1c81243
 
e4f334a
 
1c81243
 
 
 
e4f334a
 
 
 
1c81243
 
 
e4f334a
a1d9fca
3e5ab39
a1d9fca
3e5ab39
e4f334a
 
 
 
 
 
 
 
 
 
1c81243
e4f334a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1c81243
 
 
e4f334a
1c81243
e4f334a
 
 
 
 
1c81243
 
e4f334a
1c81243
e4f334a
1c81243
e4f334a
 
1c81243
e4f334a
 
 
 
 
 
 
 
1c81243
 
e4f334a
1c81243
 
e4f334a
 
 
 
 
 
 
 
 
 
 
 
1c81243
 
e4f334a
 
1c81243
e4f334a
 
 
 
1c81243
 
 
 
a1d9fca
 
1c81243
 
 
 
 
 
 
 
3e5ab39
e4f334a
 
1c81243
e4f334a
1c81243
e4f334a
 
 
 
1c81243
 
 
 
e4f334a
 
1c81243
 
e4f334a
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
# %%
import gradio as gr
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
import random
from matplotlib.ticker import MaxNLocator
from transformers import pipeline

MODEL_NAMES = ["bert-base-uncased",
               "distilbert-base-uncased", "xlm-roberta-base"]
OWN_MODEL_NAME = 'add-your-own'

DECIMAL_PLACES = 1
EPS = 1e-5  # to avoid /0 errors

# Example date conts
DATE_SPLIT_KEY = "DATE"
START_YEAR = 1801
STOP_YEAR = 1999
NUM_PTS = 20
DATES = np.linspace(START_YEAR, STOP_YEAR, NUM_PTS).astype(int).tolist()
DATES = [f'{d}' for d in DATES]

# Example place conts
# https://www3.weforum.org/docs/WEF_GGGR_2021.pdf
# Bottom 10 and top 10 Global Gender Gap ranked countries.
PLACE_SPLIT_KEY = "PLACE"
PLACES = [
    "Afghanistan",
    "Yemen",
    "Iraq",
    "Pakistan",
    "Syria",
    "Democratic Republic of Congo",
    "Iran",
    "Mali",
    "Chad",
    "Saudi Arabia",
    "Switzerland",
    "Ireland",
    "Lithuania",
    "Rwanda",
    "Namibia",
    "Sweden",
    "New Zealand",
    "Norway",
    "Finland",
    "Iceland"]


# Example Reddit interest consts
# in order of increasing self-identified female participation.
# See http://bburky.com/subredditgenderratios/ , Minimum subreddit size: 400000
SUBREDDITS = [
    "GlobalOffensive",
    "pcmasterrace",
    "nfl",
    "sports",
    "The_Donald",
    "leagueoflegends",
    "Overwatch",
    "gonewild",
    "Futurology",
    "space",
    "technology",
    "gaming",
    "Jokes",
    "dataisbeautiful",
    "woahdude",
    "askscience",
    "wow",
    "anime",
    "BlackPeopleTwitter",
    "politics",
    "pokemon",
    "worldnews",
    "reddit.com",
    "interestingasfuck",
    "videos",
    "nottheonion",
    "television",
    "science",
    "atheism",
    "movies",
    "gifs",
    "Music",
    "trees",
    "EarthPorn",
    "GetMotivated",
    "pokemongo",
    "news",
    # removing below subreddit as most of the tokens are taken up by it:
    # ['ff', '##ff', '##ff', '##fu', '##u', '##u', '##u', '##u', '##u', '##u', '##u', '##u', '##u', '##u', '##u', ...]
    # "fffffffuuuuuuuuuuuu",
    "Fitness",
    "Showerthoughts",
    "OldSchoolCool",
    "explainlikeimfive",
    "todayilearned",
    "gameofthrones",
    "AdviceAnimals",
    "DIY",
    "WTF",
    "IAmA",
    "cringepics",
    "tifu",
    "mildlyinteresting",
    "funny",
    "pics",
    "LifeProTips",
    "creepy",
    "personalfinance",
    "food",
    "AskReddit",
    "books",
    "aww",
    "sex",
    "relationships",
]

GENDERED_LIST = [
    ['he', 'she'],
    ['him', 'her'],
    ['his', 'hers'],
    ["himself", "herself"],
    ['male', 'female'],
    ['man', 'woman'],
    ['men', 'women'],
    ["husband", "wife"],
    ['father', 'mother'],
    ['boyfriend', 'girlfriend'],
    ['brother', 'sister'],
    ["actor", "actress"],
]

# %%
# Fire up the models
models = dict()

for bert_like in MODEL_NAMES:
    models[bert_like] = pipeline("fill-mask", model=bert_like)

# %%


def get_gendered_token_ids():
    male_gendered_tokens = [list[0] for list in GENDERED_LIST]
    female_gendered_tokens = [list[1] for list in GENDERED_LIST]

    return male_gendered_tokens, female_gendered_tokens


def prepare_text_for_masking(input_text, mask_token, gendered_tokens, split_key):
    text_w_masks_list = [
        mask_token if word in gendered_tokens else word for word in input_text.split()]
    num_masks = len([m for m in text_w_masks_list if m == mask_token])

    text_portions = ' '.join(text_w_masks_list).split(split_key)
    return text_portions, num_masks


def get_avg_prob_from_pipeline_outputs(mask_filled_text, gendered_token, num_preds):
    pronoun_preds = [sum([
        pronoun["score"] if pronoun["token_str"].lower(
        ) in gendered_token else 0.0
        for pronoun in top_preds])
        for top_preds in mask_filled_text
    ]
    return round(sum(pronoun_preds) / (EPS + num_preds) * 100, DECIMAL_PLACES)

# %%


def get_figure(df, gender, n_fit=1):
    df = df.set_index('x-axis')
    cols = df.columns
    xs = list(range(len(df)))
    ys = df[cols[0]]
    fig, ax = plt.subplots()
    # Trying small fig due to rendering issues on HF, not on VS Code
    fig.set_figheight(3)
    fig.set_figwidth(9)

    # find stackoverflow reference
    p, C_p = np.polyfit(xs, ys, n_fit, cov=1)
    t = np.linspace(min(xs)-1, max(xs)+1,  10*len(xs))
    TT = np.vstack([t**(n_fit-i) for i in range(n_fit+1)]).T

    # matrix multiplication calculates the polynomial values
    yi = np.dot(TT, p)
    C_yi = np.dot(TT, np.dot(C_p, TT.T))  # C_y = TT*C_z*TT.T
    sig_yi = np.sqrt(np.diag(C_yi))  # Standard deviations are sqrt of diagonal

    ax.fill_between(t, yi+sig_yi, yi-sig_yi, alpha=.25)
    ax.plot(t, yi, '-')
    ax.plot(df, 'ro')
    ax.legend(list(df.columns))

    ax.axis('tight')
    ax.set_xlabel("Value injected into input text")
    ax.set_title(
        f"Probability of predicting {gender} pronouns.")
    ax.set_ylabel(f"Softmax prob for pronouns")
    ax.xaxis.set_major_locator(MaxNLocator(6))
    ax.tick_params(axis='x', labelrotation=5)
    return fig


# %%
def predict_gender_pronouns(
    model_name,
    own_model_name,
    indie_vars,
    split_key,
    normalizing,
    n_fit,
    input_text,
):
    """Run inference on input_text for each model type, returning df and plots of percentage
    of gender pronouns predicted as female and male in each target text.
    """
    if model_name not in MODEL_NAMES:
        model = pipeline("fill-mask", model=own_model_name)
    else:
        model = models[model_name]

    mask_token = model.tokenizer.mask_token

    indie_vars_list = indie_vars.split(',')

    male_gendered_tokens, female_gendered_tokens = get_gendered_token_ids()

    text_segments, num_preds = prepare_text_for_masking(
        input_text, mask_token, male_gendered_tokens + female_gendered_tokens, split_key)

    male_pronoun_preds = []
    female_pronoun_preds = []
    for indie_var in indie_vars_list:

        target_text = f"{indie_var}".join(text_segments)
        mask_filled_text = model(target_text)
        # Quick hack as realized return type based on how many MASKs in text.
        if type(mask_filled_text[0]) is not list:
            mask_filled_text = [mask_filled_text]

        female_pronoun_preds.append(get_avg_prob_from_pipeline_outputs(
            mask_filled_text,
            female_gendered_tokens,
            num_preds
        ))
        male_pronoun_preds.append(get_avg_prob_from_pipeline_outputs(
            mask_filled_text,
            male_gendered_tokens,
            num_preds
        ))

    if normalizing:
        total_gendered_probs = np.add(
            female_pronoun_preds, male_pronoun_preds)
        female_pronoun_preds = np.around(
            np.divide(female_pronoun_preds, total_gendered_probs+EPS)*100,
            decimals=DECIMAL_PLACES
        )
        male_pronoun_preds = np.around(
            np.divide(male_pronoun_preds, total_gendered_probs+EPS)*100,
            decimals=DECIMAL_PLACES
        )

    results_df = pd.DataFrame({'x-axis': indie_vars_list})
    results_df['female_pronouns'] = female_pronoun_preds
    results_df['male_pronouns'] = male_pronoun_preds
    female_fig = get_figure(results_df.drop(
        'male_pronouns', axis=1), 'female',  n_fit,)
    male_fig = get_figure(results_df.drop(
        'female_pronouns', axis=1), 'male',  n_fit,)
    display_text = f"{random.choice(indie_vars_list)}".join(text_segments)

    return (
        display_text,
        female_fig,
        male_fig,
        results_df,
    )


# %%
title = "Causing Gender Pronouns"
description = """
## Intro 

"""

place_example = [
    MODEL_NAMES[0],
    '',  
    ', '.join(PLACES),
    'PLACE',
    "False",
    1,
    'Born in PLACE, she was a teacher.'
]

date_example = [
    MODEL_NAMES[0],
    '',  
    ', '.join(DATES),
    'DATE',
    "False",
    3,
    'Born in DATE, she was a doctor.'
]


subreddit_example = [
    MODEL_NAMES[2],
    '',  
    ', '.join(SUBREDDITS),
    'SUBREDDIT',
    "False",
    1,
    'I saw in r/SUBREDDIT that she is a hacker.'
]

own_model_example = [
    OWN_MODEL_NAME,
    'lordtt13/COVID-SciBERT',
    ', '.join(DATES),
    'DATE',
    "False",
    3,
    'Ending her professorship in DATE, she was instrumental in developing the COVID vaccine.'
]


def date_fn():
    return date_example


def place_fn():
    return place_example


def reddit_fn():
    return subreddit_example


def your_fn():
    return own_model_example


# %%
demo = gr.Blocks()
with demo:
    gr.Markdown("## Spurious Correlation Evaluation for our LLMs")
    gr.Markdown("Although genders are relatively evenly distributed across time, place and interests, there are also known gender disparities in terms of access to resources. Here we demonstrate that this access disparity can result in dataset selection bias, causing models to learn a surprising range of spurious associations.")
    gr.Markdown("These spurious associations are often considered undesirable, as they do not match our intuition about the real-world domain from which we derive samples for inference-time prediction.")
    gr.Markdown("Selection of samples into datasets is a zero-sum-game, with even our high quality datasets forced to trade off one for another, thus inducing selection bias into the learned associations of the model.")

    gr.Markdown("### Data Generating Process")
    gr.Markdown("To pick values below that are most likely to cause spurious correlations, it helps to make some assumptions about the training datasets' likely data generating process, and where selection bias may come in.")

    gr.Markdown("A plausible data generating processes for both Wikipedia and Reddit sourced data is shown as a DAG below. These DAGs are prone to collider bias when conditioning on `access`. In other words, although in real life `place`, `date`, (subreddit) `interest` and gender are all unconditionally independent, when we condition on their common effect, `access`, they become unconditionally dependent. Composing a dataset often requires the dataset maintainers to condition on `access`. Thus LLMs learn these dataset induced dependencies, appearing to us as spurious correlations.")
    gr.Markdown("""
    <center>
    <img src="https://www.dropbox.com/s/f0numpllywdd271/combo_dag_block_party.png?raw=1" 
        alt="DAG of possible data generating process for datasets used in training some of our LLMs.">
    </center>
    """)
    
    gr.Markdown("There may be misassumptions in our DAG above, which you can explore below.")
    gr.Markdown("Or you may be interested in applying this demo to your own model of interest. This demo _should_ work with any Hugging Face model that supports the [fill-mask](https://huggingface.co/models?pipeline_tag=fill-mask) task.")

    gr.Markdown("### Dose-response Relationship")
    gr.Markdown("One intuitive way to see the impact that changing one variable may have upon another is to look for a dose-response relationship, in which a larger intervention in the treatment (the value in text form injected in the otherwise unchanged text sample) produces a larger response in the output (the softmax probability of a gendered pronoun).")

    gr.Markdown("### This Demo")
    gr.Markdown("This type of plot requires a range of values along which we may see a spectrum of gender representation (or misrepresentation) in our datasets.")
    gr.Markdown("Click on one of the examples below (where we sweep through a spectrum of `places`, `date` and `subreddit` interest) to get an idea of whats intended here. Then try your own!")

    with gr.Row():
        gr.Markdown("X-axis sorted by older to more recent dates:")
        place_gen = gr.Button('Country example')

        gr.Markdown(
            "X-axis sorted by bottom 10 and top 10 [Global Gender Gap](https://www3.weforum.org/docs/WEF_GGGR_2021.pdf) ranked countries by World Economic Forum in 2021:")
        date_gen = gr.Button('Date example')

        gr.Markdown(
            "X-axis sorted in order of increasing self-identified female participation (see [bburky demo](http://bburky.com/subredditgenderratios/)): ")
        subreddit_gen = gr.Button('Subreddit example')

        gr.Markdown("Date example with your own model loaded! (We recommend you try after seeing how others work. It can take a while to load new model.)")
        your_gen = gr.Button('Your model example')

    with gr.Row():
        x_axis = gr.Textbox(
            lines=5,
            label="Pick a spectrum of comma separated values for text injection and x-axis",
        )


    gr.Markdown(
        "Pick a pre-loaded BERT-family model of interest, or add another Hugging Face model that supports the [fill-mask](https://huggingface.co/models?pipeline_tag=fill-mask) task (this may take some time to load).")

    with gr.Row():
        model_name = gr.Radio(
            MODEL_NAMES + [OWN_MODEL_NAME],
            type="value",
            label="Model: Pick a BERT-like model.",
        )
        own_model_name = gr.Textbox(
            label="If you selected an 'add-your-own' model, put your models Hugging Face pipeline name here. We think it should work with any model that supports the fill-mask task.",
        )

    gr.Markdown(
        "We are able to test the pre-trained LLMs without any modification to the models, as the gender-pronoun prediction task is simply a special case of the masked language modeling (MLM) task, with which all these models were pre-trained. Rather than random masking, the gender-pronoun prediction task masks only non-gender-neutral terms (listed in prior [Space](https://huggingface.co/spaces/emilylearning/causing_gender_pronouns_two)).")
    gr.Markdown("For the pre-trained LLMs the final prediction is a softmax over the entire tokenizer's vocabulary, from which we sum up the portion of the probability mass from the top five prediction words that are gendered terms. Pick if you want to the predictions normalied to these gendered terms only.")
    gr.Markdown("Also tell the demo what special token you will use in your input text, that you would like replaced with the spectrum of values you listed above, and the degree of polynomial fit used for high-lighting possible dose response trend ")


    with gr.Row():
        to_normalize = gr.Dropdown(
            ["False", "True"],
            label="Normalize model's predictions to only the gendered ones?",
            type="index",
        )
        place_holder = gr.Textbox(
            label="Special token place-holder that used in input text that will be replaced with the above spectrum of values.",
        )
        n_fit = gr.Dropdown(
            list(range(1, 5)),
            label="Degree of polynomial fit for high-lighting possible dose response trend",
            type="value",
        )

    gr.Markdown(
        "Finally, add input text that includes at least one gendered pronouns and one place-holder token specified above.")

    with gr.Row():
        input_text = gr.Textbox(
            lines=3,
            label="Input Text: Sentence that includes gendered pronouns and your place-holder token specified above.",
        )

    gr.Markdown("### Outputs!")
    gr.Markdown("Scroll down and 'Hit Submit'!")

    with gr.Row():
        sample_text = gr.Textbox(
            type="auto", label="Output text: Sample of text fed to model")
    with gr.Row():
        female_fig = gr.Plot(type="auto")
        male_fig = gr.Plot(type="auto")
    with gr.Row():
        df = gr.Dataframe(
            show_label=True,
            overflow_row_behaviour="show_ends",
            label="Table of softmax probability for pronouns predictions",
        )

    with gr.Row():

        date_gen.click(date_fn, inputs=[], outputs=[model_name, own_model_name,
                       x_axis, place_holder, to_normalize,  n_fit, input_text])
        place_gen.click(place_fn, inputs=[], outputs=[
                        model_name, own_model_name, x_axis, place_holder, to_normalize,  n_fit, input_text])
        subreddit_gen.click(reddit_fn, inputs=[], outputs=[
                            model_name, own_model_name, x_axis, place_holder, to_normalize,  n_fit, input_text])
        your_gen.click(your_fn, inputs=[], outputs=[
            model_name, own_model_name, x_axis, place_holder, to_normalize,  n_fit, input_text])

    with gr.Row():
        btn = gr.Button("Hit submit")
        btn.click(
            predict_gender_pronouns,
            inputs=[model_name, own_model_name, x_axis, place_holder,
                    to_normalize, n_fit, input_text],
            outputs=[sample_text, female_fig, male_fig, df])

demo.launch(debug=True)