Spaces:
Running
Running
File size: 10,659 Bytes
06b45ef d4b589f 55392f1 d4b589f 55392f1 06b45ef 55392f1 06b45ef 25dd383 06b45ef 25dd383 06b45ef 25dd383 06b45ef 25dd383 06b45ef 25dd383 55392f1 d4b589f 06b45ef 25dd383 06b45ef 25dd383 06b45ef d4b589f 06b45ef d4b589f 06b45ef 25dd383 a828a08 a46f7eb a828a08 25dd383 a828a08 25dd383 a828a08 25dd383 a828a08 25dd383 a828a08 25dd383 06b45ef d4b589f 25dd383 06b45ef d4b589f 06b45ef 07e397d 06b45ef 07e397d 06b45ef 25dd383 06b45ef a828a08 06b45ef 25dd383 06b45ef a828a08 06b45ef 25dd383 06b45ef d4b589f 25dd383 a828a08 06b45ef d4b589f 06b45ef 7c94469 06b45ef 25dd383 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 |
# %%
import gradio as gr
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
import random
from matplotlib.ticker import MaxNLocator
from transformers import pipeline
from winogender_sentences import get_sentences
OWN_MODEL_NAME = 'add-a-model'
PICK_YOUR_OWN_LABEL = 'pick-your-own'
MODEL_NAME_DICT = {
"roberta-large": "RoBERTa-large",
"bert-large-uncased": "BERT-large",
"roberta-base": "RoBERTa-base",
"bert-base-uncased": "BERT-base",
OWN_MODEL_NAME: "Your model's"
}
MODEL_NAMES = list(MODEL_NAME_DICT.keys())
DECIMAL_PLACES = 1
EPS = 1e-5 # to avoid /0 errors
NUM_PTS_TO_AVERAGE = 2
# Example date conts
DATE_SPLIT_KEY = "DATE"
START_YEAR = 1901
STOP_YEAR = 2016
NUM_PTS = 30
DATES = np.linspace(START_YEAR, STOP_YEAR, NUM_PTS).astype(int).tolist()
DATES = [f'{d}' for d in DATES]
GENDERED_LIST = [
['he', 'she'],
['him', 'her'],
['his', 'hers'],
["himself", "herself"],
['male', 'female'],
# ['man', 'woman'] Explicitly added in winogender extended sentences
['men', 'women'],
["husband", "wife"],
['father', 'mother'],
['boyfriend', 'girlfriend'],
['brother', 'sister'],
["actor", "actress"],
]
# %%
# Fire up the models
models = {m: pipeline("fill-mask", model=m)
for m in MODEL_NAMES if m != OWN_MODEL_NAME}
# %%
# Get the winogender sentences
winogender_sentences = get_sentences()
occs = sorted(list({sentence_id.split('_')[0]
for sentence_id in winogender_sentences}))
# %%
def get_gendered_token_ids():
male_gendered_tokens = [list[0] for list in GENDERED_LIST]
female_gendered_tokens = [list[1] for list in GENDERED_LIST]
return male_gendered_tokens, female_gendered_tokens
def get_winogender_texts(occ):
return [winogender_sentences[id] for id in winogender_sentences.keys() if id.split('_')[0] == occ]
def display_input_texts(occ, alt_text):
if occ == PICK_YOUR_OWN_LABEL:
texts = alt_text.split('\n')
else:
texts = get_winogender_texts(occ)
display_texts = [
f"{i+1}) {text}" for (i, text) in enumerate(texts)]
return "\n".join(display_texts), texts
def get_avg_prob_from_pipeline_outputs(pipeline_preds, gendered_tokens, num_preds):
pronoun_preds = [sum([
pronoun["score"] if pronoun["token_str"].strip(
).lower() in gendered_tokens else 0.0
for pronoun in top_preds])
for top_preds in pipeline_preds
]
return round(sum(pronoun_preds) / (EPS + num_preds) * 100, DECIMAL_PLACES)
def is_top_pred_gendered(pipeline_preds, gendered_tokens):
return pipeline_preds[0][0]['token_str'].strip().lower() in gendered_tokens
# %%
def get_figure(df, model_name, occ):
xs = df[df.columns[0]]
ys = df[df.columns[1]]
fig, ax = plt.subplots()
ax.bar(xs, ys)
ax.axis('tight')
ax.set_xlabel("Sentence number")
ax.set_ylabel("Specification Metric")
ax.set_title(
f"Task Specification Metric on {MODEL_NAME_DICT[model_name]} for '{occ}' sentences")
return fig
# %%
def predict_gender_pronouns(
model_name,
own_model_name,
texts,
occ,
):
"""Run inference on input_text for selected model type, returning Task Specification metric results.
"""
# TODO: make these selectable by user
indie_vars = ', '.join(DATES)
num_ave = NUM_PTS_TO_AVERAGE
# For debugging
print('input_texts', texts)
if model_name is None or model_name == '':
model_name = MODEL_NAMES[0]
model = models[model_name]
elif model_name == OWN_MODEL_NAME:
model = pipeline("fill-mask", model=own_model_name)
else:
model = models[model_name]
mask_token = model.tokenizer.mask_token
indie_vars_list = indie_vars.split(',')
male_gendered_tokens, female_gendered_tokens = get_gendered_token_ids()
masked_texts = [text.replace('MASK', mask_token) for text in texts]
all_uncertainty_f = {}
not_top_gendered = set()
for i, text in enumerate(masked_texts):
female_pronoun_preds = []
male_pronoun_preds = []
top_pred_gendered = True # Assume true unless told otherwise
print(f"{i+1}) {text}")
for indie_var in indie_vars_list[:num_ave] + indie_vars_list[-num_ave:]:
target_text = f"In {indie_var}: {text}"
pipeline_preds = model(target_text)
# Quick hack as realized return type based on how many MASKs in text.
if type(pipeline_preds[0]) is not list:
pipeline_preds = [pipeline_preds]
# If top-pred not gendered, record as such
if not is_top_pred_gendered(pipeline_preds, female_gendered_tokens + male_gendered_tokens):
top_pred_gendered = False
num_preds = 1 # By design
female_pronoun_preds.append(get_avg_prob_from_pipeline_outputs(
pipeline_preds,
female_gendered_tokens,
num_preds
))
male_pronoun_preds.append(get_avg_prob_from_pipeline_outputs(
pipeline_preds,
male_gendered_tokens,
num_preds
))
# Normalizing by all gendered predictions
total_gendered_probs = np.add(
female_pronoun_preds, male_pronoun_preds)
norm_female_pronoun_preds = np.around(
np.divide(female_pronoun_preds, total_gendered_probs+EPS)*100,
decimals=DECIMAL_PLACES
)
sent_idx = f"{i+1}" if top_pred_gendered else f"{i+1}*"
all_uncertainty_f[sent_idx] = round(abs((sum(norm_female_pronoun_preds[-num_ave:]) - sum(norm_female_pronoun_preds[:num_ave]))
/ num_ave), DECIMAL_PLACES)
uncertain_df = pd.DataFrame.from_dict(
all_uncertainty_f, orient='index', columns=['Specification Metric'])
uncertain_df = uncertain_df.reset_index().rename(
columns={'index': 'Sentence number'})
return (
target_text,
uncertain_df,
get_figure(uncertain_df, model_name, occ),
)
demo = gr.Blocks()
with demo:
input_texts = gr.Variable([])
gr.Markdown("**Detect Task Specification at Inference-time.**")
gr.Markdown("""This method exploits the specification-induced spurious correlations demonstrated in this
[Spurious Correlations Hugging Face Space](https://huggingface.co/spaces/emilylearning/spurious_correlation_evaluation) to detect task specification at inference-time.
For this method, well-specified tasks should have a lower specification metric value, and unspecified tasks should have a higher specification metric value.
""")
gr.Markdown("""As an example, see the figure below with test sentences from the [Winogender schema](https://aclanthology.org/N18-2002/) for the occupation of `Doctor`.
With a close read, you can see that only sentence numbers (3) and (4) are well-specified for the gendered pronoun resolution task:
the masked pronoun is coreferent with the `man` or `woman`; the remainder are unspecfied: the masked pronoun is coreferent with a gender-unspecified person.
In this example we have 100\% accurate detection with the specification metric near zero for only sentence (3) and (4).
<p align="center">
<img src="file/spec_metric_result.png" alt="results" width="500"/>
</p>
""")
gr.Markdown("**To test this for yourself, follow the numbered steps below to test one of the pre-loaded options.** Once you get the hang of it, you can load a new model and/or provide your own input texts.")
gr.Markdown(f"""1) Pick a preloaded BERT-like model.
*Note: RoBERTa-large performance is best.*
2) Pick an Occupation type from the Winogender Schemas evaluation set.
*Or select '{PICK_YOUR_OWN_LABEL}' (it need not be about an occupation).*
3) Click the first button to load input texts.
*Read the sentences to determine which two are well-specified for gendered pronoun coreference resolution. The rest are gender-unspecified.*
4) Click the second button to get Task Specification Metric results.
""")
with gr.Row():
model_name = gr.Radio(
MODEL_NAMES,
type="value",
label="1) Pick a preloaded BERT-like model (note: RoBERTa-large performance is best).",
)
own_model_name = gr.Textbox(
label=f"...Or, if you selected an '{OWN_MODEL_NAME}' model, put any Hugging Face pipeline model name \
(that supports the `fill-mask` task (see list at https://huggingface.co/models?pipeline_tag=fill-mask).",
)
with gr.Row():
occ_box = gr.Radio(
occs+[PICK_YOUR_OWN_LABEL], label=f"2) Pick an Occupation type from the Winogender Schemas evaluation set, or select '{PICK_YOUR_OWN_LABEL}'\
(it need not be about an occupation).")
with gr.Row():
alt_input_texts = gr.Textbox(
lines=2,
label=f"...Or, if you selected '{PICK_YOUR_OWN_LABEL}' above, add your own texts new-line delimited sentences here. Be sure\
to include a single MASK-ed out pronoun. \
If unsure on the required format, click an occupation above instead, to see some example input texts for this round."
)
with gr.Row():
get_text_btn = gr.Button("3) Click to load input texts.")
get_text_btn.click(
fn=display_input_texts,
inputs=[occ_box, alt_input_texts],
outputs=[gr.Textbox(
label='Numbered sentences for evaluation. Number below corresponds to number in x-axis of plot.'), input_texts],
)
with gr.Row():
uncertain_btn = gr.Button("4) Click to get Task Specification Metric results!")
gr.Markdown(
"""We expect a lower specification metric value for well-specified tasks.
Note: If there is an * by a sentence number, then at least one top prediction for that sentence was non-gendered.""")
with gr.Row():
female_fig = gr.Plot(type="auto")
with gr.Row():
female_df = gr.Dataframe()
with gr.Row():
display_text = gr.Textbox(
type="text", label="Sample of text fed to model")
uncertain_btn.click(
fn=predict_gender_pronouns,
inputs=[model_name, own_model_name, input_texts, occ_box],
# inputs=date_example,
outputs=[display_text, female_df, female_fig]
)
demo.launch(debug=True)
# %% |