Spaces:
Running
Running
File size: 16,353 Bytes
568c4f3 2c5158e 568c4f3 2c5158e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 |
import gradio as gr
import pandas as pd
from pathlib import Path
import ast
'''
Causal Gene Discovery Model
/home/ema30/zaklab/rare_disease_dx/checkpoints/aligner/04_30_22:13:29:55_lr_1e-05_val_simulated_pats.disease_split_val_sim_pats_kg_8.9.21_kg_losstype_gene_multisimilarity/all_udn_patients_kg_8.9.21_kgsolved_manual_baylor_nobgm_distractor_genes_5_candidates_mapped_only_genes
Patients-Like-Me Model
/home/ema30/zaklab/rare_disease_dx/checkpoints/patient_NCA/04_26_22:17:38:30_lr_5e-05_val_simulated_pats.disease_split_val_sim_pats_kg_8.9.21_kg_losstype_patient_patient_NCA/mygene2_all_sim_all_udn_patients_kg_8.9.21_kgsolved_with_phenotypes
Disease Characterization Model
/home/ema30/zaklab/rare_disease_dx/checkpoints/patient_NCA/05_13_22:08:00:32_lr_1e-05_val_simulated_pats.disease_split_val_sim_pats_kg_8.9.21_kg_losstype_pd_NCA/mygene2_all_sim_all_udn_patients_kg_8.9.21_kgsolved_with_phenotypes
'''
gene_scores_df = pd.read_csv('gene_discovery_scores.csv')
exomiser_gene_scores_df = pd.read_csv('exomiser_gene_discovery_scores.csv')
patient_scores_df = pd.read_csv('patients_like_me_scores.csv')
dx_scores_df = pd.read_csv('dx_characterization_scores.csv')
plm_attn_df = pd.read_csv('patients_like_me_scores_attn.csv')
dx_attn_df = pd.read_csv('dx_characterization_scores_attn.csv')
gene_attn_df = pd.read_csv('gene_discovery_scores_attn.csv')
exomiser_gene_attn_df = pd.read_csv('exomiser_gene_discovery_scores_attn.csv')
diseases_map = {'UDN-P1': 'POLR3-releated leukodystrophy', 'UDN-P2': 'Novel Syndrome', 'UDN-P3':'Coffin-Lowry syndrome' ,
'UDN-P4': 'automsomal recessive spastic paraplegia type 76', 'UDN-P5': 'atypical presentation of familial cold autoinflammatory syndrome',
'UDN-P6': '*GATAD2B*-associated syndrome', 'UDN-P7': 'AR limb-girdle muscular atrophy type 2D', 'UDN-P8': '*ATP5PO*-related Leigh syndrome', 'UDN-P9': 'Spondyloepimetaphyseal dysplasia, Isidor-Toutain type'}
genes_map = {'UDN-P3': 'RPS6KA3', 'UDN-P4': 'CAPN1', 'UDN-P5': 'NLRP12, RAPGEFL1', 'UDN-P6': 'GATAD2B', 'UDN-P7': 'SGCA', 'UDN-P8': 'ATP5P0', 'UDN-P9': 'RPL13'}
def get_patient(patient_id, attn_df):
'''
Returns phenotypes, candidate genes, Causal gene, disease
'''
if patient_id in genes_map: gene = genes_map[patient_id]
else:
patient_gene_scores_df = gene_scores_df.loc[gene_scores_df['patient_id'] == patient_id]
gene = ', '.join(patient_gene_scores_df.loc[patient_gene_scores_df['correct_gene_label'] == 1, 'genes'].tolist())
if patient_id in diseases_map: disease = diseases_map[patient_id]
else:
patient_dx_scores_df = dx_scores_df.loc[dx_scores_df['patient_id'] == patient_id]
disease = ', '.join(patient_dx_scores_df.loc[patient_dx_scores_df['correct_label'] == 1, 'diseases'].tolist())
patient_attn_df = attn_df.loc[attn_df['patient_id'] == patient_id]
phenotypes = ', '.join(patient_attn_df['phenotypes'].tolist())
patient_str = f'''
**Selected Patient:** {patient_id}<br>
**Causal Gene:** *{gene}*<br>
**Disease:** {disease}<br>
**Phenotypes:** {phenotypes}<br><br>
'''
return patient_str
def read_file(filename):
with open(filename, 'r') as file:
f = file.read()
return f
def causal_gene_discovery(patient_id, prioritization_type):
if prioritization_type == 'Variant Filtered':
scores_df = exomiser_gene_scores_df.loc[exomiser_gene_scores_df['patient_id'] == patient_id]
else:
scores_df = gene_scores_df.loc[gene_scores_df['patient_id'] == patient_id]
# read in gene scores
scores_df = scores_df.sort_values("similarities", ascending=False)
scores_df['similarities'] = scores_df['similarities'].round(3).astype(str)
# add links to gene cards
scores_df['genes'] = scores_df['genes'].apply(lambda x: f'<u>[{x}](https://www.genecards.org/cgi-bin/carddisp.pl?gene={x})</u>')
# bold/color causal gene
scores_df.loc[scores_df['correct_gene_label'] == 1, 'similarities'] = scores_df.loc[scores_df['correct_gene_label'] == 1, 'similarities'].apply(lambda x: f'<span style="color:green">**{x}**</span>')
scores_df.loc[scores_df['correct_gene_label'] == 1, 'genes'] = scores_df.loc[scores_df['correct_gene_label'] == 1, 'genes'].apply(lambda x: f'<span style="color:green">**{x}**</span>')
#filter df
scores_df = scores_df.drop(columns=['patient_id', 'correct_gene_label']).rename(columns={ 'similarities': 'SHEPHERD Score', 'genes': 'Candidate Genes'}) #'correct_gene_label' : 'Is Causal Gene',
#############
# Attention
#read in phenotype attention
if prioritization_type == 'Variant Filtered':
attn_df = exomiser_gene_attn_df.loc[exomiser_gene_attn_df['patient_id'] == patient_id]
else:
attn_df = gene_attn_df.loc[gene_attn_df['patient_id'] == patient_id]
attn_df = attn_df.sort_values("attention", ascending=False)
attn_df['attention'] = attn_df['attention'].round(4)
attn_df = attn_df.drop(columns=['patient_id', 'degrees'])
#############
# KG neighborhood
#image_loc = f'images/{patient_id}.png'
html_file = f'https://michellemli.github.io/test_html/{patient_id}.html'
kg_html = f'''<iframe id="igraph" scrolling="no" style="border:none; width: 100%; height: 600px" seamless="seamless" src="{html_file}"></iframe>'''
#patient_info
patient = get_patient(patient_id, gene_attn_df)
return patient, scores_df, attn_df, kg_html
def patients_like_me(patient_id, k=10):
scores_df = patient_scores_df.loc[patient_scores_df['patient_id'] == patient_id]
scores_df = scores_df.sort_values("similarities", ascending=False)
#scores_df['phenotypes'] ='PHEN'
# add links to disease pages
scores_df['disease_ids'] = scores_df['disease_ids'].apply(lambda x: f'(https://www.orpha.net/consor/cgi-bin/OC_Exp.php?lng=en&Expert={x})</u>')
scores_df['diseases'] = scores_df['diseases'].apply(lambda x: f'<u>[{x}]')
scores_df['diseases'] = scores_df['diseases'] + scores_df['disease_ids']
scores_df['genes'] = scores_df['genes'].apply(lambda x: f'<u>[{x}](https://www.genecards.org/cgi-bin/carddisp.pl?gene={x})</u>')
# bold/color patients with same causal gene
scores_df.loc[scores_df['correct_label'] == 1, 'candidate_patients'] = scores_df.loc[scores_df['correct_label'] == 1, 'candidate_patients'].apply(lambda x: f'<span style="color:green">**{x}**</span>')
scores_df.loc[scores_df['correct_label'] == 1, 'genes'] = scores_df.loc[scores_df['correct_label'] == 1, 'genes'].apply(lambda x: f'<span style="color:green">**{x}**</span>')
scores_df.loc[scores_df['correct_label'] == 1, 'diseases'] = scores_df.loc[scores_df['correct_label'] == 1, 'diseases'].apply(lambda x: f'<span style="color:green">**{x}**</span>')
scores_df = scores_df.drop(columns=['patient_id', 'similarities', 'correct_label', 'disease_ids']).rename(columns={'candidate_patients': 'Candidate Patient', 'genes': 'Candidate Patient\'s Gene', 'diseases': 'Candidate Patient\'s Disease' }) #'phenotypes': 'Candidate Patient\'s Phenotypes'
scores_df = scores_df.head(k)
#read in phenotype attention
attn_df = plm_attn_df.loc[plm_attn_df['patient_id'] == patient_id]
attn_df = attn_df.sort_values("attention", ascending=False)
attn_df['attention'] = attn_df['attention'].round(4)
attn_df = attn_df.drop(columns=['patient_id', 'degrees'])
#patient_info
patient = get_patient(patient_id, plm_attn_df)
return patient, scores_df, attn_df
def disease_characterization(patient_id, k=10):
#TODO: limit # of rows
scores_df = dx_scores_df.loc[dx_scores_df['patient_id'] == patient_id]
scores_df = scores_df.sort_values("similarities", ascending=False)
scores_df = scores_df.head(k)
scores_df.loc[ scores_df['disease_ids'].str.contains('Coxa vara'), 'disease_ids'] = '2812'
scores_df.loc[ scores_df['disease_ids'].str.contains('Multiple epiphyseal dysplasia'), 'disease_ids'] = '2654'
scores_df['disease_ids'] = scores_df['disease_ids'].apply(lambda x: ast.literal_eval(x))
scores_df['type_disease_ids'] = scores_df['disease_ids'].apply(lambda x: type(x))
scores_df.loc[scores_df['type_disease_ids'] == list, 'disease_ids'] = scores_df.loc[scores_df['type_disease_ids'] == list, 'disease_ids'].apply(lambda x: x[0])
# add links to disease pages
scores_df['disease_ids'] = scores_df['disease_ids'].apply(lambda x: f'(https://www.orpha.net/consor/cgi-bin/OC_Exp.php?lng=en&Expert={x})</u>')
scores_df['diseases'] = scores_df['diseases'].apply(lambda x: f'<u>[{x}]')
scores_df['diseases'] = scores_df['diseases'] + scores_df['disease_ids']
# one disease couldn't map to orphanet
scores_df.loc[ scores_df['disease_ids'].str.contains('33657'), 'diseases'] = '<u>[leukodystrophy, hypomyelinating, 20](https://www.omim.org/entry/619071)</u>'
scores_df.loc[ scores_df['disease_ids'].str.contains('2654'), 'diseases'] = '<u>[Multiple epiphyseal dysplasia](https://www.orpha.net/consor/cgi-bin/OC_Exp.php?lng=EN&Expert=251)</u>'
scores_df.loc[ scores_df['disease_ids'].str.contains('2812'), 'diseases'] = '<u>[Coxa vara](https://omim.org/entry/122750)</u>'
scores_df = scores_df.drop(columns=['patient_id', 'similarities', 'correct_label', 'disease_ids','type_disease_ids']).rename(columns={'diseases' : 'Disease'})
#read in phenotype attention
attn_df = dx_attn_df.loc[dx_attn_df['patient_id'] == patient_id]
attn_df = attn_df.sort_values("attention", ascending=False)
attn_df['attention'] = attn_df['attention'].round(4)
attn_df = attn_df.drop(columns=['patient_id', 'degrees'])
#patient_info
patient = get_patient(patient_id, dx_attn_df)
return patient, scores_df, attn_df
def get_umap(umap_type):
# get UMAP
if umap_type == 'disease':
html_file = 'https://michellemli.github.io/test_html/shepherd_disease_characterization_umap.html'
#html_file = read_file('images/udn_orphafit_patient_umap_nneigh=50_mindist=0.9_spread=1.0colored_by_disease_category.html')
elif umap_type == 'patient':
html_file = 'https://michellemli.github.io/test_html/shepherd_patient_umap.html'
else:
raise NotImplementedError
# return f"""<iframe style="width: 100%; height: 480px" name="result" allow="midi;
# display-capture; encrypted-media;" sandbox="allow-modals allow-forms
# allow-scripts allow-same-origin allow-popups
# allow-top-navigation-by-user-activation allow-downloads" allowfullscreen=""
# allowpaymentrequest="" frameborder="0" srcdoc='{html_file}'></iframe>"""
return f'''<embed style="border: none;" src="{html_file}" dpi="300" width="100%" height="750px" />'''
#return f'''<iframe id="igraph" scrolling="no" style="border:none; width: 100%; height: 750px" seamless="seamless" src="{html_file}"></iframe>'''
with gr.Blocks() as demo: #css="#gene_attn_accordion {text-align: center}" css="kg_neigh {width: 70%}"
gr.Markdown('<center><h1>AI-assisted Rare Disease Diagnosis with SHEPHERD</h1></center>')
#gr.Markdown('<center><h2>A few SHot Explainable Predictor for Hard-to-diagnosE Rare Diseases</h2></center>')
with gr.Tabs():
with gr.TabItem("Causal Gene Discovery"):
with gr.Column():
gr.Markdown('<center><h2>Select a patient to view SHEPHERD\'s predictions</h2></center>')
gene_dropdown = gr.Dropdown(choices=['UDN-P1', 'UDN-P2'], label='Rare Disease Patients', type='value') #value='UDN-P1',
gene_radio = gr.Radio(choices=['Expert Curated', 'Variant Filtered'], value='Expert Curated', label='Type of Gene List')
patient_info = gr.Markdown() #get_patient('UDN-P1')
with gr.Accordion(label=f'SHEPHERD\'s Ranking of Patient\'s Candidate Genes', open=True, elem_id='gene_accordion'):
#gr.Markdown(f'<center><h3>SHEPHERD\'s Ranking of Patient\'s Candidate Genes</h3></center>')
gr.Markdown('The patient\'s causal gene (i.e. gene harboring a variant that explains the patient\'s symptoms) is colored in green.')
gene_dataframe = gr.Dataframe(max_rows=5, elem_id="gene_df", datatype = 'markdown', headers=['Candidate Genes', 'SHEPHERD Score' ], overflow_row_behaviour='paginate') # label='Candidate Genes', show_label=False,
with gr.Accordion(label=f'SHEPHERD\'s Attention to Patient\'s Phenotypes', open=False, elem_id='gene_attn_accordion'):
#gr.Markdown(f'<center><h3>SHEPHERD\'s Attention to Patient\'s Phenotypes</h3></center>')
gene_attn_dataframe = gr.Dataframe(max_rows=5, elem_id="gene_attn_df", headers=['Phenotypes', 'Attention' ], overflow_row_behaviour='paginate') # label='Candidate Genes', show_label=False,
with gr.Accordion(label=f'Visualization of Patient\'s Neighborhood in the Knowledge Graph', open=False, elem_id='kg_neigh_accordion'):
#kg_neighborhood_image = gr.Image(elem_id='kg_neigh')#.style(height=200, width=200)
kg_neighborhood_image = gr.HTML(elem_id = 'kg_patient_neighborhood')
#gene_button = gr.Button("Go")
with gr.TabItem("Patients Like Me"):
gr.HTML(get_umap('patient'))
gr.Markdown('<center><h2>Select a patient to view SHEPHERD\'s predictions</h2></center>')
patient_dropdown = gr.Dropdown(choices=['UDN-P3','UDN-P4','UDN-P5','UDN-P6'], label='Rare Disease Patients', type='value')
p_patient_info = gr.Markdown()
with gr.Accordion(label=f'Top 10 Most Similar Patients according to SHEPHERD', open=True, elem_id='pt_accordion'): #
patient_dataframe = gr.Dataframe(max_rows=10, datatype = 'markdown', show_label=False, elem_id="pat_df", headers=['Candidate Patient', 'Candidate Patient\'s Gene', 'Candidate Patient\'s Disease' ]) #'Candidate Patient\'s Phenotypes'
#patient_button = gr.Button("Go")
with gr.Accordion(label='SHEPHERD\'s Attention to Patient\'s Phenotypes', open=False, elem_id='pt_attn_accordion'):
pt_attn_dataframe = gr.Dataframe(max_rows=5, elem_id="pt_attn_df", headers=['Phenotypes', 'Attention' ], overflow_row_behaviour='paginate')
with gr.TabItem("Disease Characterization"):
gr.HTML(get_umap('disease'))
gr.Markdown('<center><h2>Select a patient to view SHEPHERD\'s predictions</h2></center>')
dx_dropdown = gr.Dropdown(choices=['UDN-P7','UDN-P8','UDN-P9','UDN-P2'], label='Rare Disease Patients', type='value')
dx_patient_info = gr.Markdown()
with gr.Accordion(label='Top 10 Most Similar Diseases according to SHEPHERD', open=True, elem_id='pt_accordion'): #
dx_dataframe = gr.Dataframe(max_rows=10, datatype = 'markdown', show_label=False, elem_id="dx_df", headers=['Diseases'])
with gr.Accordion(label='SHEPHERD\'s Attention to Patient\'s Phenotypes', open=False, elem_id='dx_attn_accordion'):
dx_attn_dataframe = gr.Dataframe(max_rows=5, elem_id="dx_attn_df", headers=['Phenotypes', 'Attention' ], overflow_row_behaviour='paginate')
#dx_button = gr.Button("Go")
gene_dropdown.change(causal_gene_discovery, inputs=[gene_dropdown,gene_radio], outputs=[patient_info, gene_dataframe, gene_attn_dataframe, kg_neighborhood_image])
gene_radio.change(causal_gene_discovery, inputs=[gene_dropdown,gene_radio], outputs=[patient_info, gene_dataframe, gene_attn_dataframe, kg_neighborhood_image])
patient_dropdown.change(patients_like_me, inputs=patient_dropdown, outputs=[p_patient_info, patient_dataframe, pt_attn_dataframe])
dx_dropdown.change(disease_characterization, inputs=dx_dropdown, outputs=[dx_patient_info, dx_dataframe, dx_attn_dataframe])
#gene_dropdown.change(get_patient, inputs=gene_dropdown, outputs=patient_info)
#gene_button.click(causal_gene_discovery, inputs=gene_dropdown, outputs=[gene_dataframe,gene_attn_dataframe, kg_neighborhood_image])
#patient_button.click(patients_like_me, inputs=patient_dropdown, outputs=patient_dataframe)
#dx_button.click(disease_characterization, inputs=dx_dropdown, outputs=dx_dataframe)
demo.launch(share=True ) #server_port=50018, share=True
|