File size: 1,498 Bytes
4a8795e
 
b8e825d
 
4a8795e
 
 
0dbf7df
 
597c751
 
61d1760
c5b9e50
 
 
 
 
 
 
597c751
b5073e3
2f346ad
eb3bab9
0aa9785
0dbf7df
 
 
597c751
4a8795e
 
 
 
 
 
 
 
 
41ca7cb
61d1760
4a8795e
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
import gradio
import cv2
import numpy as np



def inference(img):
  #out = cv2.erode(img,(15,15))
  #out = cv2.dilate(out,(55,55))
  # https://scikit-image.org/docs/dev/api/skimage.morphology.html#skimage.morphology.remove_small_objects  
  # my_result = cv2.remove_small_objects(binarized.astype(bool), min_size=2, connectivity=2).astype(int)

  #img_bw = 255*(cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) > 5).astype('uint8')
  #se1 = cv2.getStructuringElement(cv2.MORPH_RECT, (5,5))
  #se2 = cv2.getStructuringElement(cv2.MORPH_RECT, (2,2))
  #mask = cv2.morphologyEx(img_bw, cv2.MORPH_CLOSE, se1)
  #mask = cv2.morphologyEx(mask, cv2.MORPH_OPEN, se2)
  #mask = np.dstack([mask, mask, mask]) / 255
  #out = img * mask

  #out = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY ) # grayscale
  out = cv2.adaptiveThreshold(img,255,cv2.ADAPTIVE_THRESH_GAUSSIAN_C, cv2.THRESH_BINARY,11,2)
  #BAD out = cv2.adaptiveThreshold(img,255,cv2.ADAPTIVE_THRESH_MEAN_C,cv2.THRESH_BINARY,40,15)
    
  #kernel = cv2.getStructuringElement(cv2.MORPH_RECT, kernelSize)
  #opening = cv2.morphologyEx(gray, cv2.MORPH_OPEN, kernel)

  return out

# For information on Interfaces, head to https://gradio.app/docs/
# For user guides, head to https://gradio.app/guides/
# For Spaces usage, head to https://huggingface.co/docs/hub/spaces
iface = gradio.Interface(
  fn=inference,
  inputs='image',
  outputs='image',
  title='Hello World', 
  description='The simplest interface!',
  examples=["llama.jpg", "dT4KW.png"])  

iface.launch()