Spaces:
Build error
Build error
File size: 8,591 Bytes
5238467 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 |
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
"""
All the functions to build the relevant models and modules
from the Hydra config.
"""
import typing as tp
import warnings
import audiocraft
import omegaconf
import torch
from .encodec import CompressionModel, EncodecModel, FlattenedCompressionModel # noqa
from .lm import LMModel
from ..modules.codebooks_patterns import (
CodebooksPatternProvider,
DelayedPatternProvider,
ParallelPatternProvider,
UnrolledPatternProvider,
VALLEPattern,
MusicLMPattern,
)
from ..modules.conditioners import (
BaseConditioner,
ConditioningProvider,
LUTConditioner,
T5Conditioner,
ConditionFuser,
ChromaStemConditioner,
)
from .. import quantization as qt
from ..utils.utils import dict_from_config
def get_quantizer(quantizer: str, cfg: omegaconf.DictConfig, dimension: int) -> qt.BaseQuantizer:
klass = {
'no_quant': qt.DummyQuantizer,
'rvq': qt.ResidualVectorQuantizer
}[quantizer]
kwargs = dict_from_config(getattr(cfg, quantizer))
if quantizer != 'no_quant':
kwargs['dimension'] = dimension
return klass(**kwargs)
def get_encodec_autoencoder(encoder_name: str, cfg: omegaconf.DictConfig):
if encoder_name == 'seanet':
kwargs = dict_from_config(getattr(cfg, 'seanet'))
encoder_override_kwargs = kwargs.pop('encoder')
decoder_override_kwargs = kwargs.pop('decoder')
encoder_kwargs = {**kwargs, **encoder_override_kwargs}
decoder_kwargs = {**kwargs, **decoder_override_kwargs}
encoder = audiocraft.modules.SEANetEncoder(**encoder_kwargs)
decoder = audiocraft.modules.SEANetDecoder(**decoder_kwargs)
return encoder, decoder
else:
raise KeyError(f'Unexpected compression model {cfg.compression_model}')
def get_compression_model(cfg: omegaconf.DictConfig) -> CompressionModel:
"""Instantiate a compression model.
"""
if cfg.compression_model == 'encodec':
kwargs = dict_from_config(getattr(cfg, 'encodec'))
encoder_name = kwargs.pop('autoencoder')
quantizer_name = kwargs.pop('quantizer')
encoder, decoder = get_encodec_autoencoder(encoder_name, cfg)
quantizer = get_quantizer(quantizer_name, cfg, encoder.dimension)
frame_rate = kwargs['sample_rate'] // encoder.hop_length
renormalize = kwargs.pop('renormalize', None)
renorm = kwargs.pop('renorm')
if renormalize is None:
renormalize = renorm is not None
warnings.warn("You are using a deprecated EnCodec model. Please migrate to new renormalization.")
return EncodecModel(encoder, decoder, quantizer,
frame_rate=frame_rate, renormalize=renormalize, **kwargs).to(cfg.device)
else:
raise KeyError(f'Unexpected compression model {cfg.compression_model}')
def get_lm_model(cfg: omegaconf.DictConfig) -> LMModel:
"""Instantiate a transformer LM.
"""
if cfg.lm_model == 'transformer_lm':
kwargs = dict_from_config(getattr(cfg, 'transformer_lm'))
n_q = kwargs['n_q']
q_modeling = kwargs.pop('q_modeling', None)
codebooks_pattern_cfg = getattr(cfg, 'codebooks_pattern')
attribute_dropout = dict_from_config(getattr(cfg, 'attribute_dropout'))
cls_free_guidance = dict_from_config(getattr(cfg, 'classifier_free_guidance'))
cfg_prob, cfg_coef = cls_free_guidance["training_dropout"], cls_free_guidance["inference_coef"]
fuser = get_condition_fuser(cfg)
condition_provider = get_conditioner_provider(kwargs["dim"], cfg).to(cfg.device)
if len(fuser.fuse2cond['cross']) > 0: # enforce cross-att programatically
kwargs['cross_attention'] = True
if codebooks_pattern_cfg.modeling is None:
assert q_modeling is not None, \
'LM model should either have a codebook pattern defined or transformer_lm.q_modeling'
codebooks_pattern_cfg = omegaconf.OmegaConf.create(
{'modeling': q_modeling, 'delay': {'delays': list(range(n_q))}}
)
pattern_provider = get_codebooks_pattern_provider(n_q, codebooks_pattern_cfg)
return LMModel(
pattern_provider=pattern_provider,
condition_provider=condition_provider,
fuser=fuser,
cfg_dropout=cfg_prob,
cfg_coef=cfg_coef,
attribute_dropout=attribute_dropout,
dtype=getattr(torch, cfg.dtype),
device=cfg.device,
**kwargs
).to(cfg.device)
else:
raise KeyError(f'Unexpected LM model {cfg.lm_model}')
def get_conditioner_provider(output_dim: int, cfg: omegaconf.DictConfig) -> ConditioningProvider:
"""Instantiate a conditioning model.
"""
device = cfg.device
duration = cfg.dataset.segment_duration
cfg = getattr(cfg, "conditioners")
cfg = omegaconf.OmegaConf.create({}) if cfg is None else cfg
conditioners: tp.Dict[str, BaseConditioner] = {}
with omegaconf.open_dict(cfg):
condition_provider_args = cfg.pop('args', {})
for cond, cond_cfg in cfg.items():
model_type = cond_cfg["model"]
model_args = cond_cfg[model_type]
if model_type == "t5":
conditioners[str(cond)] = T5Conditioner(output_dim=output_dim, device=device, **model_args)
elif model_type == "lut":
conditioners[str(cond)] = LUTConditioner(output_dim=output_dim, **model_args)
elif model_type == "chroma_stem":
model_args.pop('cache_path', None)
conditioners[str(cond)] = ChromaStemConditioner(
output_dim=output_dim,
duration=duration,
device=device,
**model_args
)
else:
raise ValueError(f"unrecognized conditioning model: {model_type}")
conditioner = ConditioningProvider(conditioners, device=device, **condition_provider_args)
return conditioner
def get_condition_fuser(cfg: omegaconf.DictConfig) -> ConditionFuser:
"""Instantiate a condition fuser object.
"""
fuser_cfg = getattr(cfg, "fuser")
fuser_methods = ["sum", "cross", "prepend", "input_interpolate"]
fuse2cond = {k: fuser_cfg[k] for k in fuser_methods}
kwargs = {k: v for k, v in fuser_cfg.items() if k not in fuser_methods}
fuser = ConditionFuser(fuse2cond=fuse2cond, **kwargs)
return fuser
def get_codebooks_pattern_provider(n_q: int, cfg: omegaconf.DictConfig) -> CodebooksPatternProvider:
"""Instantiate a codebooks pattern provider object.
"""
pattern_providers = {
'parallel': ParallelPatternProvider,
'delay': DelayedPatternProvider,
'unroll': UnrolledPatternProvider,
'valle': VALLEPattern,
'musiclm': MusicLMPattern,
}
name = cfg.modeling
kwargs = dict_from_config(cfg.get(name)) if hasattr(cfg, name) else {}
klass = pattern_providers[name]
return klass(n_q, **kwargs)
def get_debug_compression_model(device='cpu'):
"""Instantiate a debug compression model to be used for unit tests.
"""
seanet_kwargs = {
'n_filters': 4,
'n_residual_layers': 1,
'dimension': 32,
'ratios': [10, 8, 16] # 25 Hz at 32kHz
}
encoder = audiocraft.modules.SEANetEncoder(**seanet_kwargs)
decoder = audiocraft.modules.SEANetDecoder(**seanet_kwargs)
quantizer = qt.ResidualVectorQuantizer(dimension=32, bins=400, n_q=4)
init_x = torch.randn(8, 32, 128)
quantizer(init_x, 1) # initialize kmeans etc.
compression_model = EncodecModel(
encoder, decoder, quantizer,
frame_rate=25, sample_rate=32000, channels=1).to(device)
return compression_model.eval()
def get_debug_lm_model(device='cpu'):
"""Instantiate a debug LM to be used for unit tests.
"""
pattern = DelayedPatternProvider(n_q=4)
dim = 16
providers = {
'description': LUTConditioner(n_bins=128, dim=dim, output_dim=dim, tokenizer="whitespace"),
}
condition_provider = ConditioningProvider(providers)
fuser = ConditionFuser(
{'cross': ['description'], 'prepend': [],
'sum': [], 'input_interpolate': []})
lm = LMModel(
pattern, condition_provider, fuser,
n_q=4, card=400, dim=dim, num_heads=4, custom=True, num_layers=2,
cross_attention=True, causal=True)
return lm.to(device).eval()
|