Spaces:
Sleeping
Sleeping
File size: 9,228 Bytes
07db68b 26c4ece e03a30f cd5c11b e03a30f 26c4ece e03a30f cd5c11b e03a30f cd5c11b e03a30f cd5c11b e03a30f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 |
import gradio as gr
from transformers import pipeline
# Define the necessary pipelines
def load_qa_model():
return pipeline("question-answering", model="bert-large-uncased-whole-word-masking-finetuned-squad")
def load_classifier_model():
return pipeline("zero-shot-classification", model="MoritzLaurer/deberta-v3-base-zeroshot-v1.1-all-33")
def load_translator_model(target_language):
try:
model_name = f"Helsinki-NLP/opus-mt-en-{target_language}"
return pipeline("translation", model=model_name)
except Exception as e:
print(f"Error loading translation model: {e}")
return None
def load_generator_model():
try:
return pipeline("text-generation", model="EleutherAI/gpt-neo-2.7B", tokenizer="EleutherAI/gpt-neo-2.7B")
except Exception as e:
print(f"Error loading text generation model: {e}")
return None
def load_summarizer_model():
try:
return pipeline("summarization", model="facebook/bart-large-cnn")
except Exception as e:
print(f"Error loading summarization model: {e}")
return None
# Define the functions for processing
def process_qa(context, question):
qa_model = load_qa_model()
try:
return qa_model(context=context, question=question)["answer"]
except Exception as e:
print(f"Error during question answering: {e}")
return "Error during question answering"
def process_classifier(text, labels):
classifier_model = load_classifier_model()
try:
return classifier_model(text, labels)["labels"][0]
except Exception as e:
print(f"Error during classification: {e}")
return "Error during classification"
def process_translation(text, target_language):
translator_model = load_translator_model(target_language)
if translator_model:
try:
return translator_model(text)[0]["translation_text"]
except Exception as e:
print(f"Error during translation: {e}")
return "Translation error"
return "Model loading error"
def process_generation(prompt):
generator_model = load_generator_model()
if generator_model:
if prompt.strip():
try:
return generator_model(prompt, max_length=50)[0]["generated_text"]
except Exception as e:
print(f"Error during text generation: {e}")
return "Text generation error"
else:
return "Prompt is empty"
return "Model loading error"
def process_summarization(text):
summarizer_model = load_summarizer_model()
if summarizer_model:
if text.strip():
try:
return summarizer_model(text, max_length=150, min_length=40, do_sample=False)[0]["summary_text"]
except Exception as e:
print(f"Error during summarization: {e}")
return "Summarization error"
else:
return "Text is empty"
return "Model loading error"
# Gradio Interface
with gr.Blocks() as demo:
gr.Markdown("Choose an NLP task and input the required text.")
with gr.Tab("Single-Models"):
gr.Markdown("This tab is for single models demonstration.")
task_select_single = gr.Dropdown(["Question Answering", "Zero-Shot Classification", "Translation", "Text Generation", "Summarization"], label="Select Task")
input_text_single = gr.Textbox(label="Input Text")
# Additional inputs for specific tasks
context_input_single = gr.Textbox(label="Context", visible=False)
label_input_single = gr.CheckboxGroup(["positive", "negative", "neutral"], label="Labels", visible=False)
target_language_input_single = gr.Dropdown(["nl", "fr", "es", "de"], label="Target Language", visible=False)
output_text_single = gr.Textbox(label="Output")
execute_button_single = gr.Button("Execute")
def update_inputs(task):
if task == "Question Answering":
return {
context_input_single: gr.update(visible=True),
label_input_single: gr.update(visible=False),
target_language_input_single: gr.update(visible=False)
}
elif task == "Zero-Shot Classification":
return {
context_input_single: gr.update(visible=False),
label_input_single: gr.update(visible=True),
target_language_input_single: gr.update(visible=False)
}
elif task == "Translation":
return {
context_input_single: gr.update(visible=False),
label_input_single: gr.update(visible=False),
target_language_input_single: gr.update(visible=True)
}
elif task == "Text Generation":
return {
context_input_single: gr.update(visible=False),
label_input_single: gr.update(visible=False),
target_language_input_single: gr.update(visible=False)
}
elif task == "Summarization":
return {
context_input_single: gr.update(visible=False),
label_input_single: gr.update(visible=False),
target_language_input_single: gr.update(visible=False)
}
else:
return {
context_input_single: gr.update(visible=False),
label_input_single: gr.update(visible=False),
target_language_input_single: gr.update(visible=False)
}
task_select_single.change(fn=update_inputs, inputs=task_select_single,
outputs=[context_input_single, label_input_single, target_language_input_single])
def execute_task_single(task, input_text, context, labels, target_language):
if task == "Question Answering":
return process_qa(context=context, question=input_text)
elif task == "Zero-Shot Classification":
if not labels:
return "Please provide labels for classification."
return process_classifier(text=input_text, labels=labels)
elif task == "Translation":
if not target_language:
return "Please select a target language for translation."
return process_translation(text=input_text, target_language=target_language)
elif task == "Text Generation":
return process_generation(prompt=input_text)
elif task == "Summarization":
return process_summarization(text=input_text)
else:
return "Invalid task selected."
execute_button_single.click(
execute_task_single,
inputs=[task_select_single, input_text_single, context_input_single, label_input_single, target_language_input_single],
outputs=output_text_single
)
with gr.Tab("Multi-Model Task"):
gr.Markdown("This tab allows you to execute all tasks sequentially.")
# Inputs for all tasks
input_text_multi = gr.Textbox(label="Input Text")
context_input_multi = gr.Textbox(label="Context (for QA)")
label_input_multi = gr.CheckboxGroup(["positive", "negative", "neutral"], label="Labels (for Classification)")
target_language_input_multi = gr.Dropdown(["nl", "fr", "es", "de"], label="Target Language (for Translation)")
# Outputs for all tasks
output_qa = gr.Textbox(label="QA Output")
output_classification = gr.Textbox(label="Classification Output")
output_translation = gr.Textbox(label="Translation Output")
output_generation = gr.Textbox(label="Text Generation Output")
output_summarization = gr.Textbox(label="Summarization Output")
execute_button_multi = gr.Button("Execute All Tasks")
def execute_all_tasks(input_text, context, labels, target_language):
# Process Question Answering
qa_output = process_qa(context=context, question=input_text)
# Process Classification
classification_output = process_classifier(text=input_text, labels=labels)
# Process Translation
translation_output = process_translation(text=input_text, target_language=target_language)
# Process Text Generation using QA output
generation_output = process_generation(prompt=qa_output)
# Process Summarization using Text Generation output
summarization_output = process_summarization(text=generation_output)
# Return all outputs
return qa_output, classification_output, translation_output, generation_output, summarization_output
execute_button_multi.click(
execute_all_tasks,
inputs=[input_text_multi, context_input_multi, label_input_multi, target_language_input_multi],
outputs=[output_qa, output_classification, output_translation, output_generation, output_summarization]
)
demo.launch() |