Spaces:
Sleeping
Sleeping
File size: 14,460 Bytes
9183c57 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 |
import nltk
import seaborn as sns
import numpy as np
import pandas as pd
import streamlit as st
import matplotlib.pyplot as plt
import plotly.express as px
import plotly.graph_objects as go
import scipy.stats as stats
from sklearn.decomposition import PCA
from wordcloud import WordCloud
from sklearn.metrics import confusion_matrix
from nltk import regexp_tokenize
# Single attribute visualization
def distribution_histogram(df, attribute):
"""
Histogram of the distribution of a single attribute.
"""
if df[attribute].dtype == 'object' or pd.api.types.is_categorical_dtype(df[attribute]):
codes, uniques = pd.factorize(df[attribute])
temp_df = pd.DataFrame({attribute: codes})
fig, ax = plt.subplots(figsize=(8, 6))
sns.histplot(temp_df[attribute], ax=ax, discrete=True, color='#e17160')
ax.set_xticks(range(len(uniques)))
ax.set_xticklabels(uniques, rotation=45, ha='right')
else:
fig, ax = plt.subplots(figsize=(6, 4))
sns.histplot(df[attribute], ax=ax, color='#e17160')
ax.set_title(f"Distribution of {attribute}")
return fig
def distribution_boxplot(df, attribute):
"""
Boxplot of the distribution of a single attribute.
"""
if df[attribute].dtype == 'object' or pd.api.types.is_categorical_dtype(df[attribute]):
return -1
fig, ax = plt.subplots(figsize=(8, 6))
sns.boxenplot(data=df[attribute], palette=["#32936f", "#26a96c", "#2bc016"])
ax.set_title(f"Boxplot of {attribute}")
return fig
def count_Y(df, Y_name):
"""
Donut chart of the distribution of a single attribute.
"""
if Y_name in df.columns and df[Y_name].nunique() >= 1:
value_counts = df[Y_name].value_counts()
fig = px.pie(names=value_counts.index,
values=value_counts.values,
title=f'Distribution of {Y_name}',
hole=0.5,
color_discrete_sequence=px.colors.sequential.Cividis_r)
return fig
def density_plot(df, column_name):
"""
Density plot of the distribution of a single attribute.
"""
if column_name in df.columns:
fig = px.density_contour(df, x=column_name, y=column_name,
title=f'Density Plot of {column_name}',
color_discrete_sequence=px.colors.sequential.Inferno)
return fig
# Mutiple attribute visualization
def box_plot(df, column_names):
"""
Box plot of multiple attributes.
"""
if len(column_names) > 1 and not all(df[column_names].dtypes.apply(lambda x: np.issubdtype(x, np.number))):
return -1
valid_columns = [col for col in column_names if col in df.columns]
if valid_columns:
fig = px.box(df, y=valid_columns,
title=f'Box Plot of {", ".join(valid_columns)}',
color_discrete_sequence=px.colors.sequential.Cividis_r)
return fig
def violin_plot(df, column_names):
"""
Violin plot of multiple attributes.
"""
if len(column_names) > 1 and not all(df[column_names].dtypes.apply(lambda x: np.issubdtype(x, np.number))):
return -1
valid_columns = [col for col in column_names if col in df.columns]
if valid_columns:
fig = px.violin(df, y=valid_columns,
title=f'Violin Plot of {", ".join(valid_columns)}',
color_discrete_sequence=px.colors.sequential.Cividis_r)
return fig
def strip_plot(df, column_names):
"""
Strip plot of multiple attributes.
"""
if len(column_names) > 1 and not all(df[column_names].dtypes.apply(lambda x: np.issubdtype(x, np.number))):
return -1
valid_columns = [col for col in column_names if col in df.columns]
if valid_columns:
fig = px.strip(df, y=valid_columns,
title=f'Strip Plot of {", ".join(valid_columns)}',
color_discrete_sequence=px.colors.sequential.Cividis_r)
return fig
def multi_plot_scatter(df, selected_attributes):
"""
Scatter plot of multiple attributes.
"""
if len(selected_attributes) < 2:
return -1
plt.figure(figsize=(10, 6))
if df[selected_attributes[0]].dtype not in [np.float64, np.int64]:
x, x_labels = pd.factorize(df[selected_attributes[0]])
plt.xticks(ticks=np.arange(len(x_labels)), labels=x_labels, rotation=45)
else:
x = df[selected_attributes[0]]
if df[selected_attributes[1]].dtype not in [np.float64, np.int64]:
y, y_labels = pd.factorize(df[selected_attributes[1]])
plt.yticks(ticks=np.arange(len(y_labels)), labels=y_labels)
else:
y = df[selected_attributes[1]]
plt.scatter(x, y, c=np.linspace(0, 1, len(df)), cmap='viridis')
plt.colorbar()
plt.xlabel(selected_attributes[0])
plt.ylabel(selected_attributes[1])
plt.title(f'Scatter Plot of {selected_attributes[0]} vs {selected_attributes[1]}')
return plt.gcf()
def multi_plot_line(df, selected_attributes):
"""
Line plot of multiple attributes.
"""
if not all(df[selected_attributes].dtypes.apply(lambda x: np.issubdtype(x, np.number))):
return -1
if len(selected_attributes) >= 2:
plt.figure(figsize=(10, 6))
colors = plt.cm.viridis(np.linspace(0, 1, len(selected_attributes)))
for i, attribute in enumerate(selected_attributes):
plt.plot(df.index, df[attribute], marker='', linewidth=2, color=colors[i], label=attribute)
plt.legend()
plt.xlabel(selected_attributes[0])
plt.ylabel(selected_attributes[1])
plt.title(f'Line Plot of {selected_attributes[0]} vs {selected_attributes[1]}')
return plt.gcf()
else:
return -2
def multi_plot_heatmap(df, selected_attributes):
"""
Correlation heatmap of multiple attributes.
"""
if not all(df[selected_attributes].dtypes.apply(lambda x: np.issubdtype(x, np.number))):
return -1
if len(selected_attributes) >= 1:
sns.set_theme()
plt.figure(figsize=(10, 8))
sns.heatmap(df[selected_attributes].corr(), annot=True, cmap='viridis')
plt.title('Heatmap of Correlation')
return plt.gcf()
# Overall visualization
@st.cache_data
def correlation_matrix(df):
"""
Correlation heatmap of all attributes using Seaborn.
"""
plt.figure(figsize=(16, 12))
sns.set(font_scale=0.9)
sns.heatmap(df.corr(), annot=True, cmap='viridis', annot_kws={"size": 12})
return plt.gcf()
@st.cache_data
def correlation_matrix_plotly(df):
"""
Correlation heatmap of all attributes using Plotly.
"""
corr_matrix = df.corr()
labels = corr_matrix.columns
text = [[f'{corr_matrix.iloc[i, j]:.2f}' for j in range(len(labels))] for i in range(len(labels))]
fig = go.Figure(data=go.Heatmap(
z=corr_matrix.values,
x=labels,
y=labels,
colorscale='Viridis',
colorbar=dict(title='Correlation'),
text=text,
hoverinfo='text',
))
fig.update_layout(
title='Correlation Matrix Between Attributes',
xaxis=dict(tickmode='linear'),
yaxis=dict(tickmode='linear'),
width=800,
height=700,
)
fig.update_layout(font=dict(size=10))
return fig
@st.cache_data
def list_all(df, max_plots=16):
"""
Display histograms of all attributes in the DataFrame.
"""
# Calculate the number of plots to display (up to 16)
num_plots = min(len(df.columns), max_plots)
nrows = int(np.ceil(num_plots / 4))
ncols = min(num_plots, 4)
fig, axes = plt.subplots(nrows, ncols, figsize=(4 * ncols, 4 * nrows))
fig.suptitle('Attribute Distributions', fontsize=20)
plt.style.use('ggplot')
sns.set(style="darkgrid")
# if only one plot, convert to list
if num_plots == 1: axes = [axes]
# Flatten the axes array
axes = axes.flatten()
# Display the histograms
for i, column in enumerate(df.columns[:num_plots]):
sns.histplot(ax=axes[i], data=df, x=column, color='#1867ac')
# Hide additional subplots
for ax in axes[num_plots:]: ax.axis('off')
plt.tight_layout()
plt.subplots_adjust(top=0.95) # Adjust the top to accommodate the title
return fig
# Model evaluation
def confusion_metrix(model_name, model, X_test, Y_test):
"""
Confusion matrix plot for classification models
"""
Y_pred = model.predict(X_test)
matrix = confusion_matrix(Y_test, Y_pred)
plt.figure(figsize=(10, 7)) # temporary
sns_heatmap = sns.heatmap(matrix, annot=True, cmap='Blues', fmt='g', annot_kws={"size": 20})
plt.title(f"Confusion Matrix for {model_name}", fontsize=20)
plt.xlabel('Predicted labels', fontsize=16)
plt.ylabel('True labels', fontsize=16)
return sns_heatmap.figure
def roc(model_name, fpr, tpr):
"""
ROC curve for classification models
"""
fig = plt.figure()
plt.style.use('ggplot')
plt.plot([0,1],[0,1],'k--')
plt.plot(fpr, tpr, label=model_name)
plt.xlabel('False Positive rate')
plt.ylabel('True Positive rate')
plt.title(f'ROC Curve - {model_name}')
plt.legend(loc='best')
plt.xticks(rotation=45)
return fig
def plot_clusters(X, labels):
"""
Scatter plot of clusters for clustering models
"""
sns.set(style="whitegrid")
pca = PCA(n_components=2)
X_pca = pca.fit_transform(X)
unique_labels = set(labels)
colors = plt.cm.viridis(np.linspace(0, 1, len(unique_labels)))
fig, ax = plt.subplots()
for color, label in zip(colors, unique_labels):
idx = labels == label
ax.scatter(X_pca[idx, 0], X_pca[idx, 1], color=color, label=f'Cluster {label}', s=50)
ax.set_title('Cluster Scatter Plot')
ax.legend()
return fig
def plot_residuals(y_pred, Y_test):
"""
Residual plot for regression models
"""
residuals = Y_test - y_pred
fig, ax = plt.subplots()
sns.residplot(x=y_pred, y=residuals, lowess=True, ax=ax, scatter_kws={'alpha': 0.7}, line_kws={'color': 'purple', 'lw': 2})
ax.set_xlabel('Predicted Values')
ax.set_ylabel('Residuals')
ax.set_title('Residual Plot')
return fig
def plot_predictions_vs_actual(y_pred, Y_test):
"""
Scatter plot of predicted vs. actual values for regression models
"""
fig, ax = plt.subplots()
ax.scatter(Y_test, y_pred, c='#10a37f', marker='x')
ax.plot([Y_test.min(), Y_test.max()], [Y_test.min(), Y_test.max()], 'k--', lw=2)
ax.set_xlabel('Actual')
ax.set_ylabel('Predicted')
ax.set_title('Actual vs. Predicted')
ax.set_facecolor('white')
ax.grid(True, which='major', linestyle='--', linewidth=0.5, color='gray')
ax.spines['top'].set_visible(False)
ax.spines['right'].set_visible(False)
return fig
def plot_qq_plot(y_pred, Y_test):
"""
Quantile-Quantile plot for regression models
"""
residuals = Y_test - y_pred
fig, ax = plt.subplots()
(osm, osr), (slope, intercept, r) = stats.probplot(residuals, dist="norm", plot=None)
line = slope * osm + intercept
ax.plot(osm, line, 'grey', lw=2)
ax.scatter(osm, osr, alpha=0.8, edgecolors='#e8b517', c='yellow', label='Data Points')
ax.set_title('Quantile-Quantile Plot')
ax.set_facecolor('white')
ax.grid(True, which='major', linestyle='--', linewidth=0.5, color='gray')
ax.spines['top'].set_visible(False)
ax.spines['right'].set_visible(False)
ax.set_xlabel('Theoretical Quantiles')
ax.set_ylabel('Ordered Values')
return fig
# Advanced Visualization
@st.cache_data
def word_cloud_plot(text):
"""
Generates and displays a word cloud from the given text.
The word cloud visualizes the frequency of occurrence of words in the text, with the size of each word indicating its frequency.
:param text: The input text from which to generate the word cloud.
:return: A matplotlib figure object containing the word cloud if successful, -1 otherwise.
"""
try:
words = regexp_tokenize(text, pattern='\w+')
text_dist = nltk.FreqDist([w for w in words])
wordcloud = WordCloud(width=1200, height=600, background_color ='white').generate_from_frequencies(text_dist)
fig, ax = plt.subplots(figsize=(10, 7.5))
ax.imshow(wordcloud, interpolation='bilinear')
ax.axis('off')
return fig
except:
return -1
@st.cache_data
def world_map(df, country_column, key_attribute):
"""
Creates a choropleth world map visualization based on the specified DataFrame.
The function highlights countries based on a key attribute, providing an interactive map that can be used to analyze geographical data distributions.
:param df: DataFrame containing the data to be visualized.
:param country_column: Name of the column in df that contains country names.
:param key_attribute: Name of the column in df that contains the data to visualize on the map.
:return: A Plotly figure object representing the choropleth map if successful, -1 otherwise.
"""
try:
hover_data_columns = [col for col in df.columns if col != country_column]
fig = px.choropleth(df, locations="iso_alpha",
color=key_attribute,
hover_name=country_column,
hover_data=hover_data_columns,
color_continuous_scale=px.colors.sequential.Cividis,
projection="equirectangular",)
return fig
except:
return -1
@st.cache_data
def scatter_3d(df, x, y, z):
"""
Generates a 3D scatter plot from the given DataFrame.
Each point in the plot corresponds to a row in the DataFrame, with its position determined by three specified columns. Points are colored based on the values of the z-axis.
:param df: DataFrame containing the data to be visualized.
:param x: Name of the column in df to use for the x-axis values.
:param y: Name of the column in df to use for the y-axis values.
:param z: Name of the column in df to use for the z-axis values and color coding.
:return: A Plotly figure object containing the 3D scatter plot if successful, -1 otherwise.
"""
try:
return px.scatter_3d(df, x=x, y=y, z=z, color=z, color_continuous_scale=px.colors.sequential.Viridis)
except:
return -1
|