File size: 15,280 Bytes
9183c57
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
import streamlit as st
from util import developer_info, developer_info_static
from src.plot import plot_clusters, correlation_matrix_plotly
from src.handle_null_value import contains_missing_value, remove_high_null, fill_null_values
from src.preprocess import convert_to_numeric, remove_duplicates, transform_data_for_clustering
from src.llm_service import decide_fill_null, decide_encode_type, decide_cluster_model
from src.pca import decide_pca, perform_PCA_for_clustering
from src.model_service import save_model, calculate_silhouette_score, calculate_calinski_harabasz_score, calculate_davies_bouldin_score, gmm_predict, estimate_optimal_clusters
from src.cluster_model import train_select_cluster_model
from src.util import contain_null_attributes_info, separate_fill_null_list, check_all_columns_numeric, non_numeric_columns_and_head, separate_decode_list, get_cluster_method_name

def start_training_model():
    st.session_state["start_training"] = True

def cluster_model_pipeline(DF, API_KEY, GPT_MODEL):
    st.divider()
    st.subheader('Data Overview')
    if 'data_origin' not in st.session_state:
        st.session_state.data_origin = DF
    st.dataframe(st.session_state.data_origin.describe(), width=1200)
    
    # Data Imputation
    st.subheader('Handle and Impute Missing Values')
    if "contain_null" not in st.session_state:
        st.session_state.contain_null = contains_missing_value(st.session_state.data_origin)

    if 'filled_df' not in st.session_state:
        if st.session_state.contain_null:
            with st.status("Processing **missing values** in the data...", expanded=True) as status:
                st.write("Filtering out high-frequency missing rows and columns...")
                filled_df = remove_high_null(DF)
                st.write("Large language model analysis...")
                attributes, types_info, description_info = contain_null_attributes_info(filled_df)
                fill_result_dict = decide_fill_null(attributes, types_info, description_info, GPT_MODEL, API_KEY)
                st.write("Imputing missing values...")
                mean_list, median_list, mode_list, new_category_list, interpolation_list = separate_fill_null_list(fill_result_dict)
                filled_df = fill_null_values(filled_df, mean_list, median_list, mode_list, new_category_list, interpolation_list)
                # Store the imputed DataFrame in session_state
                st.session_state.filled_df = filled_df
                DF = filled_df
                status.update(label='Missing value processing completed!', state="complete", expanded=False)
            st.download_button(
                label="Download Data with Missing Values Imputed",
                data=st.session_state.filled_df.to_csv(index=False).encode('utf-8'),
                file_name="imputed_missing_values.csv",
                mime='text/csv')
        else:
            st.session_state.filled_df = DF
            st.success("No missing values detected. Processing skipped.")
    else:
        st.success("Missing value processing completed!")
        if st.session_state.contain_null:
            st.download_button(
                label="Download Data with Missing Values Imputed",
                data=st.session_state.filled_df.to_csv(index=False).encode('utf-8'),
                file_name="imputed_missing_values.csv",
                mime='text/csv')

    # Data Encoding
    st.subheader("Process Data Encoding")
    st.caption("*For considerations of processing time, **NLP features** like **TF-IDF** have not been included in the current pipeline, long text attributes may be dropped.")
    if 'all_numeric' not in st.session_state:
        st.session_state.all_numeric = check_all_columns_numeric(st.session_state.data_origin)
    
    if 'encoded_df' not in st.session_state:
        if not st.session_state.all_numeric:
            with st.status("Encoding non-numeric data using **numeric mapping** and **one-hot**...", expanded=True) as status:
                non_numeric_attributes, non_numeric_head = non_numeric_columns_and_head(DF)
                st.write("Large language model analysis...")
                encode_result_dict = decide_encode_type(non_numeric_attributes, non_numeric_head, GPT_MODEL, API_KEY)
                st.write("Encoding the data...")
                convert_int_cols, one_hot_cols, drop_cols = separate_decode_list(encode_result_dict, "")
                encoded_df, mappings = convert_to_numeric(DF, convert_int_cols, one_hot_cols, drop_cols)
                # Store the imputed DataFrame in session_state
                st.session_state.encoded_df = encoded_df
                DF = encoded_df
                status.update(label='Data encoding completed!', state="complete", expanded=False)
            st.download_button(
                label="Download Encoded Data",
                data=st.session_state.encoded_df.to_csv(index=False).encode('utf-8'),
                file_name="encoded_data.csv",
                mime='text/csv')
        else:
            st.session_state.encoded_df = DF
            st.success("All columns are numeric. Processing skipped.")
    else:
        st.success("Data encoded completed using numeric mapping and one-hot!")
        if not st.session_state.all_numeric:
            st.download_button(
                label="Download Encoded Data",
                data=st.session_state.encoded_df.to_csv(index=False).encode('utf-8'),
                file_name="encoded_data.csv",
                mime='text/csv')
    
    # Correlation Heatmap
    if 'df_cleaned1' not in st.session_state:
        st.session_state.df_cleaned1 = DF
    st.subheader('Correlation Between Attributes')
    st.plotly_chart(correlation_matrix_plotly(st.session_state.df_cleaned1))

    # Remove duplicate entities
    st.subheader('Remove Duplicate Entities')
    if 'df_cleaned2' not in st.session_state:
        st.session_state.df_cleaned2 = remove_duplicates(st.session_state.df_cleaned1)
        # DF = remove_duplicates(DF)
    st.info("Duplicate rows removed.")

    # Data Transformation
    st.subheader('Data Transformation')
    if 'data_transformed' not in st.session_state:
        st.session_state.data_transformed = transform_data_for_clustering(st.session_state.df_cleaned2)
    st.success("Data transformed by standardization and box-cox if applicable.")
    
    # PCA
    st.subheader('Principal Component Analysis')
    st.write("Deciding whether to perform PCA...")
    if 'df_pca' not in st.session_state:
        _, n_components = decide_pca(st.session_state.df_cleaned2)
        st.session_state.df_pca = perform_PCA_for_clustering(st.session_state.data_transformed, n_components)
    st.success("Completed!")

    # Splitting and Balancing
    if 'test_percentage' not in st.session_state:
        st.session_state.test_percentage = 20
    if 'balance_data' not in st.session_state:
        st.session_state.balance_data = False
    if "start_training" not in st.session_state:
        st.session_state["start_training"] = False
    if 'model_trained' not in st.session_state:
        st.session_state['model_trained'] = False

    splitting_column, balance_column = st.columns(2)
    with splitting_column:
        st.subheader(':grey[Data Splitting]')
        st.caption('Data splitting is not applicable to clustering models.')
        st.slider('Percentage of test set', 1, 25, st.session_state.test_percentage, key='test_percentage', disabled=True)
    
    with balance_column:
        st.metric(label="Test Data", value="--%", delta=None)
        st.toggle('Class Balancing', value=st.session_state.balance_data, key='to_perform_balance', disabled=True)
        st.caption('Class balancing is not applicable to clustering models.')
    
    st.button("Start Training Model", on_click=start_training_model, type="primary", disabled=st.session_state['start_training'])

    # Model Training
    if st.session_state['start_training']:
        with st.container():
            st.header("Modeling")
            if not st.session_state.get("data_prepared", False): 
                st.session_state.X = st.session_state.df_pca
                st.session_state.data_prepared = True

            # Decide model types:
            if "decided_model" not in st.session_state:
                st.session_state["decided_model"] = False
            if "all_set" not in st.session_state:
                st.session_state["all_set"] = False

            if not st.session_state["decided_model"]:
                with st.spinner("Deciding models based on data..."):
                    shape_info = str(st.session_state.X.shape)
                    description_info = st.session_state.X.describe().to_csv()
                    cluster_info = estimate_optimal_clusters(st.session_state.X)
                    st.session_state.default_cluster = cluster_info
                    model_dict = decide_cluster_model(shape_info, description_info, cluster_info, GPT_MODEL, API_KEY)
                    model_list = list(model_dict.values())
                    if 'model_list' not in st.session_state:
                        st.session_state.model_list = model_list
                    st.session_state.decided_model = True

            # Display results
            if st.session_state["decided_model"]:
                display_results(st.session_state.X)
                st.session_state["all_set"] = True
            
            # Download models
            if st.session_state["all_set"]:
                download_col1, download_col2, download_col3 = st.columns(3)
                with download_col1:
                    st.download_button(label="Download Model", data=st.session_state.downloadable_model1, file_name=f"{st.session_state.model1_name}.joblib", mime="application/octet-stream")
                with download_col2:
                    st.download_button(label="Download Model", data=st.session_state.downloadable_model2, file_name=f"{st.session_state.model2_name}.joblib", mime="application/octet-stream")
                with download_col3:
                    st.download_button(label="Download Model", data=st.session_state.downloadable_model3, file_name=f"{st.session_state.model3_name}.joblib", mime="application/octet-stream")

    # Footer
    st.divider()
    if "all_set" in st.session_state and st.session_state["all_set"]:
        if "has_been_set" not in st.session_state:
            st.session_state["has_been_set"] = True
            developer_info()
        else:
            developer_info_static()

def display_results(X):
    st.success("Models selected based on your data!")

    # Data set metrics
    st.metric(label="Total Data", value=len(X), delta=None)
    
    # Model training
    model_col1, model_col2, model_col3 = st.columns(3)
    with model_col1:
        if "model1_name" not in st.session_state:
            st.session_state.model1_name = get_cluster_method_name(st.session_state.model_list[0])
        st.subheader(st.session_state.model1_name)

        # Slider for model parameters
        if st.session_state.model_list[0] == 2:
            st.caption('N-cluster is not applicable to DBSCAN.')
        else:
            st.caption(f'N-cluster for {st.session_state.model1_name}:')
        n_clusters1 = st.slider('N clusters', 2, 20, st.session_state.default_cluster, label_visibility="collapsed", key='n_clusters1', disabled=st.session_state.model_list[0] == 2)
        
        with st.spinner("Model training in progress..."):
            st.session_state.model1 = train_select_cluster_model(X, n_clusters1, st.session_state.model_list[0])
            st.session_state.downloadable_model1 = save_model(st.session_state.model1)
       
        if st.session_state.model_list[0] != 3:
            label1 = st.session_state.model1.labels_
        else:
            label1 = gmm_predict(X, st.session_state.model1)

        # Visualization
        st.pyplot(plot_clusters(X, label1))
        # Model metrics
        st.write(f"Silhouette score: ", f'\n:green[**{calculate_silhouette_score(X, label1)}**]')
        st.write(f"Calinski-Harabasz score: ", f'\n:green[**{calculate_calinski_harabasz_score(X, label1)}**]')
        st.write(f"Davies-Bouldin score: ", f'\n:green[**{calculate_davies_bouldin_score(X, label1)}**]')

    with model_col2:
        if "model2_name" not in st.session_state:
            st.session_state.model2_name = get_cluster_method_name(st.session_state.model_list[1])
        st.subheader(st.session_state.model2_name)

        # Slider for model parameters
        if st.session_state.model_list[1] == 2:
            st.caption('N-cluster is not applicable to DBSCAN.')
        else:
            st.caption(f'N-cluster for {st.session_state.model2_name}:')
        n_clusters2 = st.slider('N clusters', 2, 20, st.session_state.default_cluster, label_visibility="collapsed", key='n_clusters2', disabled=st.session_state.model_list[1] == 2)

        with st.spinner("Model training in progress..."):
            st.session_state.model2 = train_select_cluster_model(X, n_clusters2, st.session_state.model_list[1])
            st.session_state.downloadable_model2 = save_model(st.session_state.model2)

        if st.session_state.model_list[1] != 3:
            label2 = st.session_state.model2.labels_
        else:
            label2 = gmm_predict(X, st.session_state.model2)

        # Visualization
        st.pyplot(plot_clusters(X, label2))
        # Model metrics
        st.write(f"Silhouette score: ", f'\n:green[**{calculate_silhouette_score(X, label2)}**]')
        st.write(f"Calinski-Harabasz score: ", f'\n:green[**{calculate_calinski_harabasz_score(X, label2)}**]')
        st.write(f"Davies-Bouldin score: ", f'\n:green[**{calculate_davies_bouldin_score(X, label2)}**]')
        
    with model_col3:
        if "model3_name" not in st.session_state:
            st.session_state.model3_name = get_cluster_method_name(st.session_state.model_list[2])
        st.subheader(st.session_state.model3_name)

        # Slider for model parameters
        if st.session_state.model_list[2] == 2:
            st.caption('N-cluster is not applicable to DBSCAN.')
        else:
            st.caption(f'N-cluster for {st.session_state.model3_name}:')
        n_clusters3 = st.slider('N clusters', 2, 20, st.session_state.default_cluster, label_visibility="collapsed", key='n_clusters3', disabled=st.session_state.model_list[2] == 2)

        with st.spinner("Model training in progress..."):
            st.session_state.model3 = train_select_cluster_model(X, n_clusters3, st.session_state.model_list[2])
            st.session_state.downloadable_model3 = save_model(st.session_state.model3)

        if st.session_state.model_list[2] != 3:
            label3 = st.session_state.model3.labels_
        else:
            label3 = gmm_predict(X, st.session_state.model3)

        # Visualization
        st.pyplot(plot_clusters(X, label3))
        # Model metrics
        st.write(f"Silhouette score: ", f'\n:green[**{calculate_silhouette_score(X, label3)}**]')
        st.write(f"Calinski-Harabasz score: ", f'\n:green[**{calculate_calinski_harabasz_score(X, label3)}**]')
        st.write(f"Davies-Bouldin score: ", f'\n:green[**{calculate_davies_bouldin_score(X, label3)}**]')