File size: 3,847 Bytes
e3dea0f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119


import torch

from Layers.LayerNorm import LayerNorm


class DurationPredictor(torch.nn.Module):

    def __init__(self, idim, n_layers=2, n_chans=384, kernel_size=3, dropout_rate=0.1, offset=1.0):
        """
        Initialize duration predictor module.

        Args:
            idim (int): Input dimension.
            n_layers (int, optional): Number of convolutional layers.
            n_chans (int, optional): Number of channels of convolutional layers.
            kernel_size (int, optional): Kernel size of convolutional layers.
            dropout_rate (float, optional): Dropout rate.
            offset (float, optional): Offset value to avoid nan in log domain.

        """
        super(DurationPredictor, self).__init__()
        self.offset = offset
        self.conv = torch.nn.ModuleList()
        for idx in range(n_layers):
            in_chans = idim if idx == 0 else n_chans
            self.conv += [torch.nn.Sequential(torch.nn.Conv1d(in_chans, n_chans, kernel_size, stride=1, padding=(kernel_size - 1) // 2, ), torch.nn.ReLU(),
                                              LayerNorm(n_chans, dim=1), torch.nn.Dropout(dropout_rate), )]
        self.linear = torch.nn.Linear(n_chans, 1)

    def _forward(self, xs, x_masks=None, is_inference=False):
        xs = xs.transpose(1, -1)  # (B, idim, Tmax)
        for f in self.conv:
            xs = f(xs)  # (B, C, Tmax)

        # NOTE: calculate in log domain
        xs = self.linear(xs.transpose(1, -1)).squeeze(-1)  # (B, Tmax)

        if is_inference:
            # NOTE: calculate in linear domain
            xs = torch.clamp(torch.round(xs.exp() - self.offset), min=0).long()  # avoid negative value

        if x_masks is not None:
            xs = xs.masked_fill(x_masks, 0.0)

        return xs

    def forward(self, xs, x_masks=None):
        """
        Calculate forward propagation.

        Args:
            xs (Tensor): Batch of input sequences (B, Tmax, idim).
            x_masks (ByteTensor, optional):
                Batch of masks indicating padded part (B, Tmax).

        Returns:
            Tensor: Batch of predicted durations in log domain (B, Tmax).

        """
        return self._forward(xs, x_masks, False)

    def inference(self, xs, x_masks=None):
        """
        Inference duration.

        Args:
            xs (Tensor): Batch of input sequences (B, Tmax, idim).
            x_masks (ByteTensor, optional):
                Batch of masks indicating padded part (B, Tmax).

        Returns:
            LongTensor: Batch of predicted durations in linear domain (B, Tmax).

        """
        return self._forward(xs, x_masks, True)


class DurationPredictorLoss(torch.nn.Module):
    """
    Loss function module for duration predictor.

    The loss value is Calculated in log domain to make it Gaussian.

    """

    def __init__(self, offset=1.0, reduction="mean"):
        """
        Args:
            offset (float, optional): Offset value to avoid nan in log domain.
            reduction (str): Reduction type in loss calculation.

        """
        super(DurationPredictorLoss, self).__init__()
        self.criterion = torch.nn.MSELoss(reduction=reduction)
        self.offset = offset

    def forward(self, outputs, targets):
        """
        Calculate forward propagation.

        Args:
             (Tensor): Batch of prediction durations in log domain (B, T)
            targets (LongTensor): Batch of groundtruth durations in linear domain (B, T)

        Returns:
            Tensor: Mean squared error loss value.

        Note:
            `` is in log domain but `targets` is in linear domain.

        """
        # NOTE:  is in log domain while targets in linear
        targets = torch.log(targets.float() + self.offset)
        loss = self.criterion(outputs, targets)

        return loss