File size: 39,204 Bytes
07423df |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 |
import gc
import logging
import os
import re
import shutil
from collections import OrderedDict
from typing import Any, Dict
import coolname
import deepspeed
import numpy as np
import torch
import transformers
from deepspeed.runtime.dataloader import DeepSpeedDataLoader
from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint
from peft import LoraConfig, PeftModel, get_peft_model
from torch.cuda.amp import autocast
from torch.nn.parallel import DistributedDataParallel
from tqdm import tqdm
from transformers import (
AutoConfig,
AutoModel,
BitsAndBytesConfig,
GenerationMixin,
StoppingCriteria,
StoppingCriteriaList,
)
from transformers.pytorch_utils import Conv1D as Conv1DTransformer
from transformers.utils import logging as transformers_logging
from llm_studio.src.datasets.text_utils import get_tokenizer
from llm_studio.src.optimizers import Optimizers
from llm_studio.src.schedulers import Schedulers
from llm_studio.src.utils.config_utils import NON_GENERATION_PROBLEM_TYPES
from llm_studio.src.utils.data_utils import (
OrderedDistributedSampler,
batch_padding,
cat_batches,
get_inference_batch_size,
)
from llm_studio.src.utils.exceptions import LLMDataException, LLMModelException
from llm_studio.src.utils.logging_utils import TqdmToLogger
from llm_studio.src.utils.utils import save_pickle
logger = logging.getLogger(__name__)
def unwrap_model(model: torch.nn.Module):
options = (torch.nn.parallel.DistributedDataParallel, torch.nn.DataParallel)
while isinstance(model, options):
model = model.module
return model
def check_disk_space(model: torch.nn.Module, path: str):
total, used, free = shutil.disk_usage(path)
model_size_in_bytes = 0
for param in model.parameters():
n_params = param.ds_numel if hasattr(param, "ds_numel") else param.numel()
if param.data.dtype in [torch.int8, torch.uint8]:
model_size_in_bytes += n_params * 1
elif param.data.dtype in [torch.float16, torch.bfloat16]:
model_size_in_bytes += n_params * 2
elif param.data.dtype == torch.float32:
model_size_in_bytes += n_params * 4
else:
# If the data type is not supported, calculate it as float32.
model_size_in_bytes += n_params * 4
logger.warning(f"Unsupported data type: {param.data.dtype}")
if model_size_in_bytes * 1.03 < free: # leave a 3% margin here.
logger.info(
"Enough space available for saving model weights."
f"Required space: {model_size_in_bytes * 1.03 / (1024 * 1024):.2f}MB, "
f"Available space: {free / (1024 * 1024):.2f}MB."
)
else:
raise ValueError(
f"Not enough space available for saving model weights. "
f"Required space: {model_size_in_bytes * 1.03 / (1024 * 1024):.2f}MB, "
f"Available space: {free / (1024 * 1024):.2f}MB."
)
# TODO: currently not saving optimizer
def save_checkpoint(model: torch.nn.Module, path: str, cfg: Any):
"""Saves a model checkpoint if the path is provided.
Args:
model: model to save
path: path to save the checkpoint to
Returns:
Dictionary with all the keys to save
"""
if cfg.environment.use_deepspeed:
if path is not None:
# gather model params from all ranks when using Deepspeed
status = model.save_16bit_model(path, "checkpoint.pth") # type: ignore
if status:
if cfg.environment._local_rank == 0:
checkpoint = {
"model": torch.load(
os.path.join(path, "checkpoint.pth"), map_location="cpu"
)
}
else:
logger.warning(
"deepspeed.save_16bit_model didn't save the model, since"
" stage3_gather_16bit_weights_on_model_save=False."
" Saving the full checkpoint instead"
)
model.save_checkpoint( # type: ignore
os.path.join(path, "ds_checkpoint")
)
if cfg.environment._local_rank == 0:
# load to cpu
state_dict = get_fp32_state_dict_from_zero_checkpoint(
os.path.join(path, "ds_checkpoint")
)
# save as normal checkpoint that can be loaded by `load_state_dict`
checkpoint = {"model": state_dict}
torch.save(checkpoint, os.path.join(path, "checkpoint.pth"))
shutil.rmtree(os.path.join(path, "ds_checkpoint"))
else:
if cfg.environment._local_rank == 0:
model = unwrap_model(model)
checkpoint = {"model": model.state_dict()}
if path is not None:
torch.save(checkpoint, os.path.join(path, "checkpoint.pth"))
if (
cfg.environment._local_rank == 0
and "classification_head.weight" in checkpoint["model"]
):
torch.save(
checkpoint["model"]["classification_head.weight"],
os.path.join(path, "classification_head.pth"),
)
def load_model_weights(
model: torch.nn.Module, model_weights: Dict, strict: bool, cfg: Any
):
orig_num_items = len(model_weights)
model_state_dict = model.state_dict()
# needed to load models trained in int4/int8 with other dtypes
model_weights = {
k: (
v
if not (
cfg.architecture.backbone_dtype not in ("int4", "int8")
and (v.dtype is torch.int8 or v.dtype is torch.uint8)
)
else model_state_dict[k]
)
for k, v in model_weights.items()
if not (
("SCB" in k or "weight_format" in k or "quant_state" in k)
and cfg.architecture.backbone_dtype not in ("int4", "int8")
)
}
# Need to ignore int4/int8 weights so undo strict loading requirement
if len(model_weights) != orig_num_items:
strict = False
model_weights = {re.sub(r"^module\.", "", k): v for k, v in model_weights.items()}
model_weights = {k.replace("_orig_mod.", ""): v for k, v in model_weights.items()}
# manual fix for int8 weights
if cfg.architecture.backbone_dtype == "int8":
model_weights = {
k: v.to(cfg.environment._device) if "weight_format" not in k else v
for k, v in model_weights.items()
}
try:
model.load_state_dict(OrderedDict(model_weights), strict=True)
except Exception as e:
if strict:
raise e
else:
if cfg.environment._local_rank == 0:
logger.warning(
"Only a part of the pretrained weights was loaded. "
"Some layers can't be initialized with pretrained "
f"weights: {e}"
)
for layer_name in re.findall("size mismatch for (.*?):", str(e)):
model_weights.pop(layer_name, None)
model.load_state_dict(OrderedDict(model_weights), strict=False)
return model
def load_checkpoint(
cfg: Any, model: torch.nn.Module, strict: bool = True, weights_path: str = None
):
"""Load checkpoint
Args:
cfg: config file
model: model to load weights to
strict: whether to apply strict matching for weights
weights_path: custom path to the weights.
If None, cfg.architecture.pretrained_weights is used
Returns:
epoch: current epoch
"""
if weights_path is None:
weights_path = cfg.architecture.pretrained_weights
model_weights = torch.load(weights_path, map_location="cpu")
if "model" in model_weights.keys():
model_weights = model_weights["model"]
if cfg.environment.use_deepspeed:
if cfg.training.lora:
model.backbone.base_model.model = load_model_weights( # type: ignore
model.backbone.base_model.model, # type: ignore
model_weights,
strict,
cfg,
)
else:
model.backbone = load_model_weights(
model.backbone, model_weights, strict, cfg # type: ignore
)
else:
model = load_model_weights(model, model_weights, strict, cfg)
del model_weights
gc.collect()
if cfg.environment._local_rank == 0:
logger.info(f"Weights loaded from: {weights_path}")
def get_ds_config(cfg: Any):
ds_config = {
"fp16": {
"enabled": True if cfg.architecture.backbone_dtype == "float16" else False,
"loss_scale_window": 100,
},
"bf16": {
"enabled": True if cfg.architecture.backbone_dtype == "bfloat16" else False,
"loss_scale_window": 100,
},
# https://www.deepspeed.ai/docs/config-json/#zero-optimizations-for-fp16-training
"zero_force_ds_cpu_optimizer": False,
"zero_optimization": {
"overlap_comm": True,
"contiguous_gradients": True,
"reduce_bucket_size": cfg.environment.deepspeed_reduce_bucket_size,
# zero3 offload cpu
# "stage3_max_live_parameters": cfg.environment.deepspeed_stage3_max_live_parameters, # noqa: E501
# "stage3_max_reuse_distance": cfg.environment.deepspeed_stage3_max_reuse_distance, # noqa: E501
# zero++
# "reduce_scatter": True,
# "zero_quantized_weights": True,
# "zero_hpz_partition_size": 16,
# "zero_quantized_gradients": True,
},
"steps_per_print": 2000,
"train_micro_batch_size_per_gpu": cfg.training.batch_size,
"gradient_accumulation_steps": cfg.training.grad_accumulation,
"wall_clock_breakdown": False,
}
if cfg.environment.deepspeed_method == "ZeRO2":
ds_config["zero_optimization"]["stage"] = 2
ds_config["zero_optimization"]["allgather_partitions"] = True
ds_config["zero_optimization"][
"allgather_bucket_size"
] = cfg.environment.deepspeed_allgather_bucket_size
elif cfg.environment.deepspeed_method == "ZeRO3":
ds_config["zero_optimization"]["stage"] = 3
ds_config["zero_optimization"][
"stage3_prefetch_bucket_size"
] = cfg.environment.deepspeed_stage3_prefetch_bucket_size
ds_config["zero_optimization"][
"stage3_param_persistence_threshold"
] = cfg.environment.deepspeed_stage3_param_persistence_threshold
ds_config["zero_optimization"][
"stage3_gather_16bit_weights_on_model_save"
] = True
# TODO: Do not enable offload cpu for now.
# if cfg.environment.deepspeed_offload_optimizer:
# ds_config["zero_optimization"]["offload_optimizer"] = {
# "device": "cpu",
# "pin_memory": True,
# }
# TODO: RuntimeError: Tensors must be CUDA and dense
# if cfg.environment.deepspeed_offload_param:
# ds_config["zero_optimization"]["offload_param"] =
# {"device": "cpu", "pin_memory": True}
logger.info(f"DeepSpeed config: {ds_config}")
return ds_config
def wrap_model_distributed(
model: torch.nn.Module,
optimizer: torch.optim.Optimizer,
lr_scheduler: torch.optim.lr_scheduler._LRScheduler,
train_dataloader: torch.utils.data.DataLoader,
val_dataloader: torch.utils.data.DataLoader,
cfg: Any,
):
if cfg.environment.use_deepspeed:
ds_config = get_ds_config(cfg)
if not cfg.training.lora:
ds_engine, optimizer, train_dataloader, lr_scheduler = deepspeed.initialize(
model=model.backbone,
optimizer=optimizer,
lr_scheduler=lr_scheduler,
training_data=train_dataloader.dataset,
config_params=ds_config,
)
model.backbone = ds_engine
else:
ds_engine, optimizer, train_dataloader, lr_scheduler = deepspeed.initialize(
model=model.backbone.base_model.model, # type: ignore
optimizer=optimizer,
lr_scheduler=lr_scheduler,
training_data=train_dataloader.dataset,
config_params=ds_config,
)
model.backbone.base_model.model = ds_engine # type: ignore
model.init_deepspeed() # type: ignore
val_dataloader = DeepSpeedDataLoader(
val_dataloader.dataset,
batch_size=val_dataloader.batch_size,
local_rank=cfg.environment._local_rank,
pin_memory=True,
tput_timer=None,
data_sampler=OrderedDistributedSampler(
val_dataloader.dataset,
num_replicas=cfg.environment._world_size,
rank=cfg.environment._local_rank,
),
)
else:
find_unused_parameters = cfg.environment.find_unused_parameters
if getattr(cfg.architecture, "gradient_checkpointing", None):
find_unused_parameters = False
model = DistributedDataParallel(
model,
device_ids=[cfg.environment._local_rank],
find_unused_parameters=find_unused_parameters,
)
return model, optimizer, train_dataloader, val_dataloader, lr_scheduler
def get_optimizer(model: torch.nn.Module, cfg: Any) -> torch.optim.Optimizer:
"""Prepares Optimizer.
Args:
model: model
cfg: input config
Returns:
Optimizer
"""
no_decay = ["bias", "LayerNorm.weight"]
differential_layers = cfg.training.differential_learning_rate_layers
optimizer = Optimizers.get(cfg.training.optimizer)(
[
{
"params": [
param
for name, param in model.named_parameters()
if (not any(layer in name for layer in differential_layers))
and (not any(nd in name for nd in no_decay))
and param.requires_grad
],
"lr": cfg.training.learning_rate,
"weight_decay": cfg.training.weight_decay,
},
{
"params": [
param
for name, param in model.named_parameters()
if (not any(layer in name for layer in differential_layers))
and (any(nd in name for nd in no_decay))
and param.requires_grad
],
"lr": cfg.training.learning_rate,
"weight_decay": 0,
},
{
"params": [
param
for name, param in model.named_parameters()
if (any(layer in name for layer in differential_layers))
and (not any(nd in name for nd in no_decay))
and param.requires_grad
],
"lr": cfg.training.differential_learning_rate,
"weight_decay": cfg.training.weight_decay,
},
{
"params": [
param
for name, param in model.named_parameters()
if (any(layer in name for layer in differential_layers))
and (any(nd in name for nd in no_decay))
and param.requires_grad
],
"lr": cfg.training.differential_learning_rate,
"weight_decay": 0,
},
],
lr=cfg.training.learning_rate,
weight_decay=cfg.training.weight_decay,
)
return optimizer
def get_scheduler(
cfg: Any, optimizer: torch.optim.Optimizer, epoch_steps: int
) -> torch.optim.lr_scheduler._LRScheduler:
"""Prepares Learning Rate Scheduler.
Args:
cfg: input config
optimizer: model optimizer
epoch_steps: total number of weight updates during the epoch
Returns:
Learning Rate Scheduler
"""
scheduler = Schedulers.get(cfg.training.schedule)(
optimizer=optimizer,
num_warmup_steps=cfg.training.warmup_epochs * epoch_steps,
num_training_steps=cfg.training.epochs * epoch_steps,
)
return scheduler
def generate_experiment_name() -> str:
"""
Generates a random human-readable experiment name in kebab-case.
Returns:
The random name.
"""
return coolname.generate_slug(2)
def reduce_metric(output, reduce=None) -> float:
"""Reduces metric and return metric score (number)
Args:
output: output of the model
reduce: how to reduce the metric over the sample dimension
Returns:
score: single number score (using config threshold for threshold metrics)
or non-reduced array of scores per sample.
"""
if reduce == "mean":
score = np.mean(output["metrics"])
else:
raise NotImplementedError()
return score
def get_number_of_validation_epochs(training_epochs: int, evaluation_epochs: float):
"""
Given the number of training epochs and the number of epochs between model
evaluations, return the number of times the model is being evaluated during
training
Args:
training_epochs: The number of epochs to train for
evaluation_epochs: This is the number of epochs after which we want to
evaluate our model
Returns:
num_val_epochs: The number of epochs to be evaluated during training.
"""
return training_epochs // evaluation_epochs
def contains_nan(output: Dict):
return (
sum(
[
1
for key, val in output.items()
if isinstance(val, torch.Tensor)
and torch.isnan(val.detach().cpu()).sum() > 0
]
)
> 0
)
def run_inference(
cfg: Any,
model: torch.nn.Module,
dataloader,
mode: str,
) -> Dict[str, list]:
"""Runs inference
Args:
cfg: config
model: model
dataloader: custom dataloader
mode: mode for inference
Returns:
Dictionary with output
"""
# Store information for evaluation
out = dict()
if cfg.environment._local_rank == 0:
logger.info(f"Starting {mode} inference")
tqdm_out = TqdmToLogger(logger, level=logging.INFO)
progress_bar = tqdm(
total=len(dataloader),
disable=cfg.environment._local_rank != 0,
file=tqdm_out,
ascii=True,
desc=f"{mode} progress",
mininterval=0,
)
log_update_steps = max(len(dataloader) // 20, 1)
inf_it = iter(dataloader)
for itr in range(len(dataloader)):
try:
data = next(inf_it)
except Exception:
raise LLMDataException("Data reading error. Skipping inference.")
val_batch_size = get_inference_batch_size(cfg)
cfg.environment._curr_val_step += val_batch_size * cfg.environment._world_size
batch = cfg.dataset.dataset_class.batch_to_device(data, cfg.environment._device)
if cfg.environment.use_deepspeed:
if (
cfg.prediction.metric != "Perplexity"
and cfg.problem_type not in NON_GENERATION_PROBLEM_TYPES
):
output = {}
output["predicted_answer_ids"] = (
model.generate(batch, cfg).detach().cpu() # type: ignore
)
else:
output = model.forward(batch)
else:
with autocast(
enabled=cfg.environment.mixed_precision,
dtype=get_torch_dtype(cfg.environment.mixed_precision_dtype),
):
if (
cfg.prediction.metric != "Perplexity"
and cfg.problem_type not in NON_GENERATION_PROBLEM_TYPES
):
output = {}
output["predicted_answer_ids"] = (
unwrap_model(model).generate(batch, cfg).detach().cpu()
)
else:
output = model.forward(batch)
if contains_nan(output) and cfg.environment.mixed_precision:
raise LLMModelException(
"NaN caught during mixed precision inference. "
"Please disable mixed precision inference. "
"Alternatively, reducing learning rate or "
"gradient clipping may help to stabilize training."
)
output = dataloader.dataset.postprocess_batch_predictions(output=output)
if "predicted_answer_ids" in output.keys():
del output["predicted_answer_ids"]
for key, val in output.items():
if isinstance(val, torch.Tensor):
val = val.detach().cpu()
# DefaultDict is not used as it adds extra keys during pickle.dump
if key not in out:
out[key] = [val]
else:
out[key] += [val]
if cfg.environment._local_rank == 0:
# Show logs each 5% of the inference
if (itr + 1) % log_update_steps == 0 or itr == len(dataloader) - 1:
progress_bar.set_description(f"{mode} progress", refresh=False)
if (itr + 1) % log_update_steps == 0:
progress_bar.update(log_update_steps)
else:
progress_bar.update(len(dataloader) % log_update_steps)
cfg.logging._logger.log(
"internal",
"current_val_step",
cfg.environment._curr_val_step,
step=cfg.environment._curr_val_step,
)
if cfg.environment._distributed:
torch.distributed.barrier()
progress_bar.close()
del progress_bar
out = cat_batches(out)
return out
def save_predictions(cfg, val_data, val_dataloader, val_df, mode):
val_data, val_df = val_dataloader.dataset.format_output( # type: ignore
cfg=cfg, df=val_df, output=val_data
)
raw_preds_name = os.path.join(cfg.output_directory, f"{mode}_raw_predictions.pkl")
csv_preds_name = os.path.join(cfg.output_directory, f"{mode}_predictions.csv")
save_pickle(raw_preds_name, val_data)
val_df.to_csv(csv_preds_name, index=False)
def update_backbone_config(config: Any, cfg: Any):
if hasattr(config, "hidden_dropout_prob"):
config.hidden_dropout_prob = cfg.architecture.intermediate_dropout
if hasattr(config, "attention_probs_dropout_prob"):
config.attention_probs_dropout_prob = cfg.architecture.intermediate_dropout
if (
not hasattr(config, "hidden_dropout_prob")
and not hasattr(config, "attention_probs_dropout_prob")
and cfg.architecture.intermediate_dropout > 0
):
logger.warning(
"Model config does not have dropout attributes. "
f"Ignoring Intermediate Dropout = {cfg.architecture.intermediate_dropout}."
)
cfg.architecture.intermediate_dropout = 0
tokenizer = get_tokenizer(cfg)
if config.eos_token_id != tokenizer.eos_token_id:
logger.warning(
"EOS token id not matching between config and tokenizer. "
"Overwriting with tokenizer id."
)
config.eos_token_id = tokenizer.eos_token_id
if config.pad_token_id != tokenizer.pad_token_id:
logger.warning(
"PAD token id not matching between config and tokenizer. "
"Overwriting with tokenizer id."
)
config.pad_token_id = tokenizer.pad_token_id
# no warning needed as not used
if config.bos_token_id != tokenizer.bos_token_id:
config.bos_token_id = tokenizer.bos_token_id
if "mpt-" in cfg.llm_backbone:
config.init_device = cfg.environment._device
# See: https://github.com/huggingface/transformers/pull/24906
if hasattr(config, "pretraining_tp") and cfg.training.lora:
logger.info("Setting pretraining_tp of model config to 1.")
config.pretraining_tp = 1
return config
def set_generation_config(backbone: torch.nn.Module, cfg_prediction: Any):
backbone.generation_config.min_new_tokens = cfg_prediction.min_length_inference
backbone.generation_config.max_new_tokens = cfg_prediction.max_length_inference
backbone.generation_config.max_time = (
cfg_prediction.max_time if cfg_prediction.max_time > 0 else None
)
backbone.generation_config.do_sample = cfg_prediction.do_sample
backbone.generation_config.num_beams = cfg_prediction.num_beams
backbone.generation_config.repetition_penalty = cfg_prediction.repetition_penalty
if cfg_prediction.do_sample:
backbone.generation_config.temperature = cfg_prediction.temperature
backbone.generation_config.top_k = cfg_prediction.top_k
backbone.generation_config.top_p = cfg_prediction.top_p
backbone.generation_config.transformers_version = transformers.__version__
return backbone
def create_nlp_backbone(cfg, model_class=AutoModel) -> Any:
"""
Creates a backbone model for NLP tasks.
This is needed for Gradient Checkpointing in DDP mode.
"""
kwargs = dict()
try:
config = AutoConfig.from_pretrained(
cfg.llm_backbone,
trust_remote_code=cfg.environment.trust_remote_code,
token=os.getenv("HUGGINGFACE_TOKEN"),
revision=cfg.environment.huggingface_branch,
)
kwargs["token"] = os.getenv("HUGGINGFACE_TOKEN")
except TypeError:
# TypeError: RWForCausalLM.__init__() got
# an unexpected keyword argument 'token'
config = AutoConfig.from_pretrained(
cfg.llm_backbone,
trust_remote_code=cfg.environment.trust_remote_code,
revision=cfg.environment.huggingface_branch,
)
config = update_backbone_config(config, cfg)
quantization_config = None
if cfg.architecture.backbone_dtype == "int8" and len(cfg.environment.gpus):
kwargs["device_map"] = {"": cfg.environment._device} # type: ignore
quantization_config = BitsAndBytesConfig(
load_in_8bit=True,
llm_int8_threshold=0.0,
)
# need to force pretrained
cfg.architecture.pretrained = True
kwargs["torch_dtype"] = torch.float16 # type: ignore
elif cfg.architecture.backbone_dtype == "int4" and len(cfg.environment.gpus):
kwargs["device_map"] = {"": cfg.environment._device} # type: ignore
quantization_config = BitsAndBytesConfig(
load_in_4bit=True,
bnb_4bit_compute_dtype=torch.float16,
bnb_4bit_quant_type="nf4",
)
# need to force pretrained
cfg.architecture.pretrained = True
kwargs["torch_dtype"] = torch.float16 # type: ignore
elif len(cfg.environment.gpus) == 0 and cfg.architecture.backbone_dtype in [
"int4",
"int8",
]:
logger.warning(
"Quantization is not supported on CPU. "
"Please run on GPU or disable quantization."
)
cfg.architecture.backbone_dtype = "float32"
else:
kwargs["torch_dtype"] = getattr(torch, cfg.architecture.backbone_dtype)
logger.info(f"Using {cfg.architecture.backbone_dtype} for backbone")
kwargs["trust_remote_code"] = cfg.environment.trust_remote_code
if cfg.training.use_flash_attention_2:
try:
import flash_attn # noqa: F401
# see https://github.com/fxmarty/transformers/
# blob/3f06a3a0aec8cc1ec3ad6bf66ebe277392c5ab37/
# src/transformers/configuration_utils.py#L380
config._attn_implementation_internal = "flash_attention_2"
if cfg.environment._local_rank == 0:
logger.info("Using Flash Attention 2.")
except ImportError:
if cfg.environment._local_rank == 0:
logger.warning(
"Flash Attention 2.0 is not available. "
"Please consider to run 'make setup' to install it."
)
if cfg.architecture.pretrained:
if cfg.environment._local_rank == 0:
logger.info(f"Loading {cfg.llm_backbone}. This may take a while.")
backbone = model_class.from_pretrained(
cfg.llm_backbone,
revision=cfg.environment.huggingface_branch,
config=config,
quantization_config=quantization_config,
**kwargs,
)
if cfg.environment._local_rank == 0:
logger.info(f"Loaded {cfg.llm_backbone}.")
else:
kwargs.pop("token", None)
backbone = model_class.from_config(config, **kwargs)
if cfg.tokenizer._vocab_length > config.vocab_size:
if cfg.environment._local_rank == 0:
logger.info(f"Resizing token embeddings to {cfg.tokenizer._vocab_length}")
backbone.resize_token_embeddings(cfg.tokenizer._vocab_length)
backbone.model_parallel = False
if cfg.training.lora:
# if used, gradient checkpointing will be enabled below
loaded_in_kbit = getattr(backbone, "is_loaded_in_8bit", False) or getattr(
backbone, "is_loaded_in_4bit", False
)
for name, param in backbone.named_parameters():
# freeze base model's layers
param.requires_grad = False
# cast all non INT8 parameters to fp32
if loaded_in_kbit:
for param in backbone.parameters():
if (param.dtype == torch.float16) or (param.dtype == torch.bfloat16):
param.data = param.data.to(torch.float32)
else:
if cfg.architecture.backbone_dtype != "float32":
if cfg.environment.mixed_precision:
logger.info("Disabling mixed precision as dtype not set to float32.")
cfg.environment.mixed_precision = False
if cfg.architecture.backbone_dtype != "bfloat16":
logger.warning(
"Pure float16 or int8 training will "
"likely lead to unstable training without adapters."
)
if cfg.architecture.gradient_checkpointing:
backbone.gradient_checkpointing_enable()
# initialize the generation config
if backbone.generation_config.eos_token_id != config.eos_token_id:
logger.warning(
"EOS token id not matching between generation config and tokenizer. "
"Overwriting with tokenizer id."
)
backbone.generation_config.eos_token_id = config.eos_token_id
if backbone.generation_config.pad_token_id != config.pad_token_id:
logger.warning(
"PAD token id not matching between generation config and tokenizer. "
"Overwriting with tokenizer id."
)
backbone.generation_config.pad_token_id = config.pad_token_id
# no warning needed as not used
if backbone.generation_config.bos_token_id != config.bos_token_id:
backbone.generation_config.bos_token_id = config.bos_token_id
if cfg.problem_type not in NON_GENERATION_PROBLEM_TYPES:
backbone = set_generation_config(backbone, cfg.prediction)
return backbone, config
# Adapted from https://github.com/huggingface/trl/blob/
# 2068fdcd931183b59110aa6dc99d8f5bb55c6f2d/trl/trainer/utils.py#L742
def activate_neftune(model, neftune_noise_alpha):
r"""
Activates the neftune as presented in this code:
https://github.com/neelsjain/NEFTune and paper: https://arxiv.org/abs/2310.05914
"""
backbone = unwrap_model(model).backbone
if isinstance(backbone, PeftModel):
embeddings = backbone.base_model.get_input_embeddings()
else:
embeddings = backbone.get_input_embeddings()
embeddings.neftune_noise_alpha = neftune_noise_alpha
embeddings.register_forward_hook(neftune_post_forward_hook)
def neftune_post_forward_hook(module, input, output):
"""
Implements the NEFTune forward pass for the model using forward hooks.
Note this works only for torch.nn.Embedding layers.
This method is slightly adapted from the original source code
that can be found here: https://github.com/neelsjain/NEFTune
Simply add it to your model as follows:
```python
model = ...
model.embed_tokens.neftune_noise_alpha = 0.1
model.embed_tokens.register_forward_hook(neftune_post_forward_hook)
```
Args:
module (`torch.nn.Module`):
The embedding module where the hook is attached. Note that you need to set
`module.neftune_noise_alpha` to the desired noise alpha value.
input (`torch.Tensor`):
The input tensor to the model.
output (`torch.Tensor`):
The output tensor of the model (i.e. the embeddings).
"""
if module.training:
dims = torch.tensor(output.size(1) * output.size(2))
mag_norm = module.neftune_noise_alpha / torch.sqrt(dims)
output = output + torch.zeros_like(output).uniform_(-mag_norm, mag_norm)
return output
class TokenStoppingCriteria(StoppingCriteria):
"""
Stopping criteria based on tokens.
Will stop generation when each generated sample contains at least one of the
stop_word_ids.
"""
def __init__(self, stop_word_ids, prompt_input_ids_len):
super().__init__()
self.prompt_input_ids_len = prompt_input_ids_len
if stop_word_ids is None:
stop_word_ids = []
self.stop_word_ids = stop_word_ids
def should_stop(
self,
generated_ids: torch.Tensor,
stop_word_id: torch.Tensor,
):
if len(stop_word_id.shape) == 0:
return (
torch.mean(((generated_ids == stop_word_id).sum(1) > 0).float()) == 1
).item()
else:
return (
self.get_num_vector_found_in_matrix_rows(stop_word_id, generated_ids)
== generated_ids.shape[0]
)
@staticmethod
def get_num_vector_found_in_matrix_rows(vector, matrix):
"""
Count the number of times a vector is found in a matrix row.
If the vector is found in a row, the search stops and the next row is searched.
"""
assert len(vector.shape) == 1
assert len(matrix.shape) == 2
found = 0
for row in matrix:
# stride through the vector
for i in range(len(row) - len(vector) + 1):
# check if the vector contains the tensor
if torch.all(row[i : i + len(vector)] == vector):
found += 1
break
return found
def __call__(self, input_ids: torch.Tensor, scores: torch.FloatTensor, **kwargs):
generated_ids: torch.Tensor = input_ids[:, self.prompt_input_ids_len :]
for stop_word_id in self.stop_word_ids:
if self.should_stop(generated_ids, stop_word_id.to(generated_ids.device)):
if generated_ids.shape[1] == 1:
logger.warning(
f"Stopping criteria triggered for {stop_word_id} at first "
"generated token."
)
return True
return False
class EnvVariableStoppingCriteria(StoppingCriteria):
"""
Stopping criteria based on env variable.
Useful to force stopping within the app.
"""
stop_streaming_env: str = "STOP_STREAMING"
def __call__(self, input_ids: torch.Tensor, scores: torch.FloatTensor, **kwargs):
should_stop = self.stop_streaming_env in os.environ
if should_stop:
logger.info("Received signal to stop generating")
return should_stop
def prepare_lora(cfg, backbone):
target_modules = (
[
lora_target_module.strip()
for lora_target_module in cfg.training.lora_target_modules.strip().split( # noqa: E501
","
)
]
if cfg.training.lora_target_modules
else None
)
if target_modules is None:
target_modules = []
for name, module in backbone.named_modules():
if (
isinstance(
module, (torch.nn.Linear, torch.nn.Conv1d, Conv1DTransformer)
)
and "head" not in name
):
name = name.split(".")[-1]
if name not in target_modules:
target_modules.append(name)
if cfg.environment._local_rank == 0:
logger.info(f"Lora module names: {target_modules}")
lora_config = LoraConfig(
r=cfg.training.lora_r,
lora_alpha=cfg.training.lora_alpha,
target_modules=target_modules,
lora_dropout=cfg.training.lora_dropout,
bias="none",
task_type="CAUSAL_LM",
)
if cfg.architecture.gradient_checkpointing:
backbone.enable_input_require_grads()
backbone = get_peft_model(backbone, lora_config)
backbone.print_trainable_parameters()
return backbone
def generate(backbone, batch, cfg, streamer, remove_prompt=True):
mask_key = "prompt_attention_mask"
pad_keys = [
"prompt_input_ids",
"prompt_attention_mask",
]
batch = batch_padding(
cfg,
batch,
training=False,
mask_key=mask_key,
pad_keys=pad_keys,
)
input_ids = batch["prompt_input_ids"]
attention_mask = batch["prompt_attention_mask"]
# Adding GenerationMixin type annotation for faster lookup
generation_function: GenerationMixin.generate = backbone.generate
verbosity = transformers_logging.get_verbosity()
stopping_criteria = StoppingCriteriaList(
[
TokenStoppingCriteria(
stop_word_ids=cfg.tokenizer._stop_words_ids,
prompt_input_ids_len=input_ids.shape[1],
),
EnvVariableStoppingCriteria(),
]
)
# force to use cache and disable gradient checkpointing if enabled
backbone.config.use_cache = True
if cfg.architecture.gradient_checkpointing:
backbone.gradient_checkpointing_disable()
transformers_logging.set_verbosity_error()
output = generation_function(
inputs=input_ids,
attention_mask=attention_mask,
generation_config=backbone.generation_config,
stopping_criteria=stopping_criteria,
renormalize_logits=True,
return_dict_in_generate=False,
use_cache=True,
streamer=streamer,
)
transformers_logging.set_verbosity(verbosity)
# enable checkpointing again
if cfg.architecture.gradient_checkpointing:
backbone.gradient_checkpointing_enable()
if remove_prompt:
output = output[:, input_ids.shape[1] :]
return output
def get_torch_dtype(dtype):
if dtype == "float16":
return torch.float16
elif dtype == "bfloat16":
return torch.bfloat16
else:
return torch.float32
|