File size: 1,822 Bytes
07423df
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
architecture:
    backbone_dtype: float16
    force_embedding_gradients: false
    gradient_checkpointing: false
    intermediate_dropout: 0.0
    config_item_that_is_not_used: 0
augmentation:
    token_mask_probability: 0.0
dataset:
    add_eos_token_to_answer: true
    add_eos_token_to_prompt: true
    answer_column: output
    data_sample: 0.1
    data_sample_choice:
    - Train
    - Validation
    mask_prompt_labels: false
    prompt_column:
    - instruction
    text_answer_separator: \n
    text_prompt_start: ''
    train_dataframe: data/user/train/train.csv
    validation_dataframe: None
    validation_size: 0.01
    validation_strategy: automatic
environment:
    compile_model: false
    find_unused_parameters: false
    gpus:
    - '0'
    mixed_precision: true
    number_of_workers: 8
    seed: -1
experiment_name: test
llm_backbone: EleutherAI/pythia-12b-deduped
logging:
    logger: None
    neptune_project: ''
    number_of_texts: 10
output_directory: output/user/test/
prediction:
    batch_size_inference: 0
    do_sample: false
    max_length_inference: 256
    max_time: 0.0
    metric: GPT3.5
    min_length_inference: 2
    num_beams: 2
    repetition_penalty: 1.2
    stop_tokens: ""
    temperature: 0.3
problem_type: text_causal_language_modeling
tokenizer:
    max_length: 144
    max_length_answer: 256
    max_length_prompt: 256
    padding_quantile: 1.0
training:
    batch_size: 3
    epochs: 0
    evaluate_before_training: true
    evaluation_epochs: 1.0
    grad_accumulation: 1
    gradient_clip: 0.0
    learning_rate: 0.0001
    lora: true
    lora_alpha: 16
    lora_dropout: 0.05
    lora_r: 4
    lora_target_modules: ''
    optimizer: AdamW
    save_best_checkpoint: false
    schedule: Cosine
    train_validation_data: false
    warmup_epochs: 0.0
    weight_decay: 0.0