Spaces:
Running
on
Zero
Running
on
Zero
File size: 5,138 Bytes
19c9a4a 1650677 501ff66 1650677 501ff66 1650677 1c4f2f2 92a6390 1650677 501ff66 92a6390 11d6379 007938a 501ff66 11d6379 501ff66 1650677 501ff66 92a6390 501ff66 1650677 92a6390 501ff66 1650677 501ff66 1650677 92a6390 1650677 501ff66 1650677 501ff66 ff7c088 92a6390 1650677 501ff66 1650677 89f63ba 92a6390 89f63ba 501ff66 1650677 501ff66 1650677 1c4f2f2 1650677 1c4f2f2 1650677 501ff66 1650677 501ff66 1650677 501ff66 1650677 501ff66 1650677 1c4f2f2 1650677 501ff66 1650677 92a6390 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 |
import spaces
import gradio as gr
import numpy as np
import PIL.Image
from PIL import Image
import random
from diffusers import ControlNetModel, StableDiffusionXLPipeline, AutoencoderKL
from diffusers import DDIMScheduler, EulerAncestralDiscreteScheduler
import torch
import os
import time
import glob
# 一時ファイルの保存ディレクトリ
TEMP_DIR = "temp_images"
# 一時ファイルの保持期間(秒)
FILE_RETENTION_PERIOD = 3600 # 1時間
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
# 一時ディレクトリの作成
os.makedirs(TEMP_DIR, exist_ok=True)
def cleanup_old_files():
"""古い一時ファイルを削除する"""
current_time = time.time()
pattern = os.path.join(TEMP_DIR, "output_*.png")
for file_path in glob.glob(pattern):
try:
# ファイルの最終更新時刻を取得
file_modified_time = os.path.getmtime(file_path)
if current_time - file_modified_time > FILE_RETENTION_PERIOD:
os.remove(file_path)
except Exception as e:
print(f"Error while cleaning up file {file_path}: {e}")
pipe = StableDiffusionXLPipeline.from_single_file(
"https://huggingface.co/Laxhar/noob_sdxl_beta/noob_hercules3/checkpoint/checkpoint-e2_s109089.safetensors/checkpoint-e2_s109089.safetensors",
use_safetensors=True,
torch_dtype=torch.float16,
)
pipe.scheduler = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config)
pipe.to(device)
MAX_SEED = np.iinfo(np.int32).max
MAX_IMAGE_SIZE = 1216
@spaces.GPU
def infer(prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps):
# 古い一時ファイルの削除
cleanup_old_files()
if randomize_seed:
seed = random.randint(0, MAX_SEED)
generator = torch.Generator().manual_seed(seed)
# 画像生成
output_image = pipe(
prompt=prompt,
negative_prompt=negative_prompt,
guidance_scale=guidance_scale,
num_inference_steps=num_inference_steps,
width=width,
height=height,
generator=generator
).images[0]
# RGBモードで保存
if output_image.mode != 'RGB':
output_image = output_image.convert('RGB')
# 一時ファイルとして保存
timestamp = int(time.time())
temp_filename = os.path.join(TEMP_DIR, f"output_{timestamp}.png")
output_image.save(temp_filename)
return temp_filename
css = """
#col-container {
margin: 0 auto;
max-width: 520px;
}
"""
with gr.Blocks(css=css) as demo:
with gr.Column(elem_id="col-container"):
gr.Markdown("""
Text-to-Image Demo
using [Noob SDXL beta model](https://huggingface.co/Laxhar)
""")
with gr.Row():
prompt = gr.Text(
label="Prompt",
show_label=False,
max_lines=1,
placeholder="Enter your prompt",
container=False,
)
run_button = gr.Button("Run", scale=0)
result = gr.Image(
label="Result",
show_label=False,
type="filepath",
elem_id="output_image"
)
with gr.Accordion("Advanced Settings", open=False):
negative_prompt = gr.Text(
label="Negative prompt",
max_lines=1,
placeholder="Enter a negative prompt",
value="nsfw, (low quality, worst quality:1.2), very displeasing, 3d, watermark, signature, ugly, poorly drawn"
)
seed = gr.Slider(
label="Seed",
minimum=0,
maximum=MAX_SEED,
step=1,
value=0,
)
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
with gr.Row():
width = gr.Slider(
label="Width",
minimum=256,
maximum=MAX_IMAGE_SIZE,
step=32,
value=1024,
)
height = gr.Slider(
label="Height",
minimum=256,
maximum=MAX_IMAGE_SIZE,
step=32,
value=1024,
)
with gr.Row():
guidance_scale = gr.Slider(
label="Guidance scale",
minimum=0.0,
maximum=20.0,
step=0.1,
value=7,
)
num_inference_steps = gr.Slider(
label="Number of inference steps",
minimum=1,
maximum=28,
step=1,
value=28,
)
run_button.click(
fn=infer,
inputs=[prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps],
outputs=[result]
)
# 起動時に古いファイルを削除
cleanup_old_files()
demo.queue().launch() |