File size: 5,138 Bytes
19c9a4a
1650677
 
501ff66
 
1650677
501ff66
 
1650677
1c4f2f2
92a6390
 
 
 
 
 
 
1650677
501ff66
 
92a6390
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
11d6379
007938a
501ff66
11d6379
501ff66
 
 
1650677
 
501ff66
 
 
 
92a6390
 
501ff66
1650677
 
 
 
 
92a6390
501ff66
1650677
 
 
 
 
 
501ff66
1650677
 
92a6390
 
 
 
 
 
 
 
 
 
1650677
 
 
 
501ff66
1650677
 
 
 
501ff66
ff7c088
 
 
 
92a6390
1650677
 
 
 
 
 
 
 
501ff66
1650677
89f63ba
 
 
92a6390
 
89f63ba
501ff66
1650677
 
 
 
 
501ff66
1650677
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1c4f2f2
1650677
 
 
 
 
 
 
1c4f2f2
1650677
 
 
 
 
 
501ff66
1650677
501ff66
1650677
 
 
 
 
501ff66
1650677
501ff66
1650677
 
1c4f2f2
1650677
501ff66
 
1650677
 
92a6390
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
import spaces
import gradio as gr
import numpy as np
import PIL.Image
from PIL import Image
import random
from diffusers import ControlNetModel, StableDiffusionXLPipeline, AutoencoderKL
from diffusers import DDIMScheduler, EulerAncestralDiscreteScheduler
import torch
import os
import time
import glob

# 一時ファイルの保存ディレクトリ
TEMP_DIR = "temp_images"
# 一時ファイルの保持期間(秒)
FILE_RETENTION_PERIOD = 3600  # 1時間

device = torch.device("cuda" if torch.cuda.is_available() else "cpu")

# 一時ディレクトリの作成
os.makedirs(TEMP_DIR, exist_ok=True)

def cleanup_old_files():
    """古い一時ファイルを削除する"""
    current_time = time.time()
    pattern = os.path.join(TEMP_DIR, "output_*.png")
    
    for file_path in glob.glob(pattern):
        try:
            # ファイルの最終更新時刻を取得
            file_modified_time = os.path.getmtime(file_path)
            if current_time - file_modified_time > FILE_RETENTION_PERIOD:
                os.remove(file_path)
        except Exception as e:
            print(f"Error while cleaning up file {file_path}: {e}")

pipe = StableDiffusionXLPipeline.from_single_file(
    "https://huggingface.co/Laxhar/noob_sdxl_beta/noob_hercules3/checkpoint/checkpoint-e2_s109089.safetensors/checkpoint-e2_s109089.safetensors",
    use_safetensors=True,
    torch_dtype=torch.float16,
)
pipe.scheduler = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config)
pipe.to(device)

MAX_SEED = np.iinfo(np.int32).max
MAX_IMAGE_SIZE = 1216

@spaces.GPU
def infer(prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps):
    # 古い一時ファイルの削除
    cleanup_old_files()

    if randomize_seed:
        seed = random.randint(0, MAX_SEED)

    generator = torch.Generator().manual_seed(seed)

    # 画像生成
    output_image = pipe(
        prompt=prompt,
        negative_prompt=negative_prompt,
        guidance_scale=guidance_scale,
        num_inference_steps=num_inference_steps,
        width=width,
        height=height,
        generator=generator
    ).images[0]

    # RGBモードで保存
    if output_image.mode != 'RGB':
        output_image = output_image.convert('RGB')
    
    # 一時ファイルとして保存
    timestamp = int(time.time())
    temp_filename = os.path.join(TEMP_DIR, f"output_{timestamp}.png")
    output_image.save(temp_filename)
    
    return temp_filename

css = """
#col-container {
    margin: 0 auto;
    max-width: 520px;
}
"""

with gr.Blocks(css=css) as demo:
    with gr.Column(elem_id="col-container"):
        gr.Markdown("""
         Text-to-Image Demo
        using [Noob SDXL beta model](https://huggingface.co/Laxhar)
        """)
        
        with gr.Row():
            prompt = gr.Text(
                label="Prompt",
                show_label=False,
                max_lines=1,
                placeholder="Enter your prompt",
                container=False,
            )
            run_button = gr.Button("Run", scale=0)

        result = gr.Image(
            label="Result",
            show_label=False,
            type="filepath",
            elem_id="output_image"
        )
        
        with gr.Accordion("Advanced Settings", open=False):
            negative_prompt = gr.Text(
                label="Negative prompt",
                max_lines=1,
                placeholder="Enter a negative prompt",
                value="nsfw, (low quality, worst quality:1.2), very displeasing, 3d, watermark, signature, ugly, poorly drawn"
            )

            seed = gr.Slider(
                label="Seed",
                minimum=0,
                maximum=MAX_SEED,
                step=1,
                value=0,
            )

            randomize_seed = gr.Checkbox(label="Randomize seed", value=True)

            with gr.Row():
                width = gr.Slider(
                    label="Width",
                    minimum=256,
                    maximum=MAX_IMAGE_SIZE,
                    step=32,
                    value=1024,
                )

                height = gr.Slider(
                    label="Height",
                    minimum=256,
                    maximum=MAX_IMAGE_SIZE,
                    step=32,
                    value=1024,
                )

            with gr.Row():
                guidance_scale = gr.Slider(
                    label="Guidance scale",
                    minimum=0.0,
                    maximum=20.0,
                    step=0.1,
                    value=7,
                )

                num_inference_steps = gr.Slider(
                    label="Number of inference steps",
                    minimum=1,
                    maximum=28,
                    step=1,
                    value=28,
                )

    run_button.click(
        fn=infer,
        inputs=[prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps],
        outputs=[result]
    )

# 起動時に古いファイルを削除
cleanup_old_files()

demo.queue().launch()