File size: 7,433 Bytes
5dbb854
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
import cv2
import numpy as np
import onnxruntime

class YOLOv7:

    def __init__(
            self, 
            model_path, 
            labels_path,
            engine_path, 
            official_nms=False
        ):
        self.official_nms = official_nms
        
        self.class_names = []
        with open(labels_path, 'r') as f:
            self.class_names = [cname.strip() for cname in f.readlines()]
        f.close()

        # Create a list of colors for each class where each color is a tuple of 3 integer values
        rng = np.random.default_rng(3)
        self.colors = rng.uniform(0, 255, size=(len(self.class_names), 3))

        # Initialize model
        self.initialize_model(model_path, engine_path)

    def __call__(self, image, confidence_threshold, nms_threshold):
        return self.detect_objects(image, confidence_threshold, nms_threshold)

    def xywh2xyxy(self, x):
        # Convert bounding box (x, y, w, h) to bounding box (x1, y1, x2, y2)
        y = np.copy(x)
        y[..., 0] = x[..., 0] - x[..., 2] / 2
        y[..., 1] = x[..., 1] - x[..., 3] / 2
        y[..., 2] = x[..., 0] + x[..., 2] / 2
        y[..., 3] = x[..., 1] + x[..., 3] / 2
        return y

    def initialize_model(self, model_path, engine_path):
        self.session = onnxruntime.InferenceSession(
            model_path,
            providers=[
                # (
                #     'TensorrtExecutionProvider',
                #     {
                #         'device_id': 0,
                #         'trt_max_workspace_size': 2147483648,
                #         'trt_fp16_enable': True,
                #         'trt_engine_cache_enable': True,
                #         'trt_engine_cache_path': '{}'.format(engine_path),
                #     }
                # ),
                # (
                #     'CUDAExecutionProvider', 
                #     {
                #         'device_id': 0,
                #         'arena_extend_strategy': 'kNextPowerOfTwo',
                #         'gpu_mem_limit': 2 * 1024 * 1024 * 1024,
                #         'cudnn_conv_algo_search': 'EXHAUSTIVE',
                #         'do_copy_in_default_stream': True,
                #     }
                # )
                'CPUExecutionProvider'
            ]
        )
        # Get model info
        self.get_input_details()
        self.get_output_details()

        self.has_postprocess = 'score' in self.output_names or self.official_nms


    def detect_objects(self, image, confidence_threshold, nms_threshold):
        input_tensor = self.prepare_input(image)

        # Perform inference on the image
        outputs = self.inference(input_tensor)

        # Process output data
        self.boxes, self.scores, self.class_ids = self.process_output(outputs, confidence_threshold, nms_threshold)

        return self.boxes, self.scores, self.class_ids

    def prepare_input(self, image):
        self.img_height, self.img_width = image.shape[:2]

        input_img = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)

        # Resize input image
        input_img = cv2.resize(input_img, (self.input_width, self.input_height))

        # Scale input pixel values to 0 to 1
        input_img = input_img / 255.0
        input_img = input_img.transpose(2, 0, 1)
        input_tensor = input_img[np.newaxis, :, :, :].astype(np.float32)

        return input_tensor
    
    def rescale_boxes(self, boxes):

        # Rescale boxes to original image dimensions
        input_shape = np.array([self.input_width, self.input_height, self.input_width, self.input_height])
        boxes = np.divide(boxes, input_shape, dtype=np.float32)
        boxes *= np.array([self.img_width, self.img_height, self.img_width, self.img_height])
        return boxes
    
    def process_output(self, output, conf_threshold, nms_threshold):
        boxes, scores, class_ids = output
        boxes = boxes[0]
        scores = scores[0]
        class_ids = class_ids[0]

        res_boxes = []
        res_scores = []
        res_class_ids = []

        for box, score, class_id in zip(boxes, scores, class_ids):
            if score > conf_threshold:
                score = score[0]
                res_boxes.append(box)
                res_scores.append(score)
                res_class_ids.append(int(class_id))
        
        if len(res_scores) == 0:
            return [], [], []
        
        # Scale boxes to original image dimensions
        res_boxes = self.rescale_boxes(res_boxes)

        fin_boxes, fin_scores, fin_class_ids = [], [], []
        final_boxes = cv2.dnn.NMSBoxes(res_boxes, res_scores, conf_threshold, nms_threshold)
        for max_valueid in final_boxes:
            fin_boxes.append(res_boxes[max_valueid])
            fin_scores.append(res_scores[max_valueid])
            fin_class_ids.append(res_class_ids[max_valueid])
        
        # Convert boxes to xyxy format
        fin_boxes = self.xywh2xyxy(np.array(fin_boxes))
        
        # Convert class ids to class names
        fin_class_ids = [self.class_names[i] for i in fin_class_ids]
        return fin_boxes, fin_scores, fin_class_ids

    def draw_detections(self, image, draw_scores=True, mask_alpha=0.4):
        
        mask_img = image.copy()
        det_img = image.copy()

        img_height, img_width = image.shape[:2]
        size = min([img_height, img_width]) * 0.0006
        text_thickness = int(min([img_height, img_width]) * 0.001)

        # Draw bounding boxes and labels of detections
        for box, score, class_id in zip(self.boxes, self.scores, self.class_ids):
            color = self.colors[class_id]

            x1, y1, x2, y2 = box.astype(int)

            # Draw rectangle
            cv2.rectangle(det_img, (x1, y1), (x2, y2), color, 2)

            # Draw fill rectangle in mask image
            cv2.rectangle(mask_img, (x1, y1), (x2, y2), color, -1)

            label = self.class_names[class_id]
            caption = f'{label} {int(score * 100)}%'
            (tw, th), _ = cv2.getTextSize(text=caption, fontFace=cv2.FONT_HERSHEY_SIMPLEX,
                                        fontScale=size, thickness=text_thickness)
            th = int(th * 1.2)

            cv2.rectangle(det_img, (x1, y1),
                        (x1 + tw, y1 - th), color, -1)
            cv2.rectangle(mask_img, (x1, y1),
                        (x1 + tw, y1 - th), color, -1)
            cv2.putText(det_img, caption, (x1, y1),
                        cv2.FONT_HERSHEY_SIMPLEX, size, (255, 255, 255), text_thickness, cv2.LINE_AA)

            cv2.putText(mask_img, caption, (x1, y1),
                        cv2.FONT_HERSHEY_SIMPLEX, size, (255, 255, 255), text_thickness, cv2.LINE_AA)

        return cv2.addWeighted(mask_img, mask_alpha, det_img, 1 - mask_alpha, 0)

    def get_input_details(self):
        model_inputs = self.session.get_inputs()
        self.input_names = [model_inputs[i].name for i in range(len(model_inputs))]

        self.input_shape = model_inputs[0].shape
        self.input_height = self.input_shape[2]
        self.input_width = self.input_shape[3]

    def get_output_details(self):
        model_outputs = self.session.get_outputs()
        self.output_names = [model_outputs[i].name for i in range(len(model_outputs))]

    def inference(self, input_tensor):
        outputs = self.session.run(self.output_names, {self.input_names[0]: input_tensor})
        return outputs