File size: 4,319 Bytes
a200fe6
 
 
 
 
 
 
 
 
 
 
 
 
6d5ec26
 
 
a200fe6
 
 
6d5ec26
a200fe6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6d5ec26
a200fe6
 
 
 
 
 
 
6d5ec26
b596009
6d5ec26
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a200fe6
6d5ec26
a200fe6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6d5ec26
f90eee6
a200fe6
 
 
 
6d5ec26
a200fe6
 
 
 
 
 
6d5ec26
a200fe6
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
"""
Credit to Derek Thomas, derek@huggingface.co
"""
import os
import logging
from pathlib import Path
from time import perf_counter

import gradio as gr
from jinja2 import Environment, FileSystemLoader

from backend.query_llm import generate_hf, generate_openai
from backend.semantic_search import retrieve
from backend.cross_encoder import rerank_with_cross_encoder




TOP_K = int(os.getenv("TOP_K", 4))
TOP_K_RERANK = int(os.getenv("TOP_K_RERANK", 40))

proj_dir = Path(__file__).parent
# Setting up the logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)

# Set up the template environment with the templates directory
env = Environment(loader=FileSystemLoader(proj_dir / 'templates'))

# Load the templates directly from the environment
template = env.get_template('template.j2')
template_html = env.get_template('template_html.j2')


def add_text(history, text):
    history = [] if history is None else history
    history = history + [(text, None)]
    return history, gr.Textbox(value="", interactive=False)


def bot(history, api_kind, cross_enc):
    query = history[-1][0]

    if not query:
        raise gr.Warning("Please submit a non-empty string as a prompt")

    logger.info('Retrieving documents...')
    # Retrieve documents relevant to query
    documents = []
    if cross_enc is None:
        document_start = perf_counter()

        documents = retrieve(query, TOP_K)

        document_time = perf_counter() - document_start
        logger.info(f'Finished Retrieving documents in {round(document_time, 2)} seconds...')

    else:
        document_start = perf_counter()

        documents = retrieve(query, TOP_K_RERANK)

        document_time = perf_counter() - document_start
        logger.info(f'Finished Retrieving documents in {round(document_time, 2)} seconds...')

        logger.info('Reranking documents')
        document_start = perf_counter()

        documents = rerank_with_cross_encoder(cross_enc, documents, query)

        document_time = perf_counter() - document_start

        logger.info(f'Finished Reranking documents in {round(document_time, 2)} seconds...')


    # Create Prompt
    prompt = template.render(documents=documents, query=query)
    prompt_html = template_html.render(documents=documents, query=query)

    if api_kind == "HuggingFace":
         generate_fn = generate_hf
    elif api_kind == "OpenAI":
         generate_fn = generate_openai
    else:
         raise gr.Error(f"API {api_kind} is not supported")

    history[-1][1] = ""
    for character in generate_fn(prompt, history[:-1]):
        history[-1][1] = character
        yield history, prompt_html


with gr.Blocks() as demo:
    chatbot = gr.Chatbot(
            [],
            elem_id="chatbot",
            avatar_images=('https://aui.atlassian.com/aui/8.8/docs/images/avatar-person.svg',
                           'https://huggingface.co/datasets/huggingface/brand-assets/resolve/main/hf-logo.svg'),
            bubble_full_width=False,
            show_copy_button=True,
            show_share_button=True,
            )

    with gr.Row():
        txt = gr.Textbox(
                scale=3,
                show_label=False,
                placeholder="Enter text and press enter",
                container=False,
                )
        txt_btn = gr.Button(value="Submit text", scale=1)

    api_kind = gr.Radio(choices=["HuggingFace", "OpenAI"], value="HuggingFace", label="LLM")
    cross_enc = gr.Radio(choices=[None, "cross-encoder/ms-marco-MiniLM-L-6-v2", "BAAI/bge-reranker-large"], value=None, label="Cross Encoder")

    prompt_html = gr.HTML()
    # Turn off interactivity while generating if you click
    txt_msg = txt_btn.click(add_text, [chatbot, txt], [chatbot, txt], queue=False).then(
            bot, [chatbot, api_kind, cross_enc], [chatbot, prompt_html])

    # Turn it back on
    txt_msg.then(lambda: gr.Textbox(interactive=True), None, [txt], queue=False)

    # Turn off interactivity while generating if you hit enter
    txt_msg = txt.submit(add_text, [chatbot, txt], [chatbot, txt], queue=False).then(
            bot, [chatbot, api_kind, cross_enc], [chatbot, prompt_html])

    # Turn it back on
    txt_msg.then(lambda: gr.Textbox(interactive=True), None, [txt], queue=False)

demo.queue()
demo.launch(debug=True)