File size: 12,004 Bytes
1ea2ba0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 |
import logging
import os
from itertools import islice
from threading import Thread
import gradio as gr
import requests
from bs4 import BeautifulSoup
from duckduckgo_search import DDGS
from langchain.agents import (AgentExecutor, AgentType,
create_openai_tools_agent, initialize_agent,
load_tools)
from langchain.callbacks.base import BaseCallbackManager
from langchain.chains import RetrievalQA
from langchain.chains.summarize import load_summarize_chain
from langchain.docstore.document import Document
from langchain.text_splitter import TokenTextSplitter
from langchain.tools import StructuredTool, Tool
from langchain_community.callbacks import get_openai_callback
from langchain_community.embeddings import OpenAIEmbeddings
from langchain_community.vectorstores import FAISS
from langchain_core.messages.ai import AIMessage
from langchain_core.messages.human import HumanMessage
from langchain_core.prompts import ChatPromptTemplate, PromptTemplate
from langchain_openai import ChatOpenAI
from pydantic.v1 import BaseModel, Field
from ..config import default_chuanhu_assistant_model
from ..index_func import construct_index
from ..presets import SUMMARIZE_PROMPT, i18n
from .base_model import (BaseLLMModel, CallbackToIterator,
ChuanhuCallbackHandler)
class GoogleSearchInput(BaseModel):
keywords: str = Field(description="keywords to search")
class WebBrowsingInput(BaseModel):
url: str = Field(description="URL of a webpage")
class WebAskingInput(BaseModel):
url: str = Field(description="URL of a webpage")
question: str = Field(
description="Question that you want to know the answer to, based on the webpage's content."
)
agent_prompt = ChatPromptTemplate.from_messages(
[
("system", "You are a helpful assistant"),
("placeholder", "{chat_history}"),
("human", "{input}"),
("placeholder", "{agent_scratchpad}"),
]
)
agent_prompt.input_variables = ['agent_scratchpad', 'input']
class ChuanhuAgent_Client(BaseLLMModel):
def __init__(self, model_name, openai_api_key, user_name="") -> None:
super().__init__(model_name=model_name, user=user_name)
self.text_splitter = TokenTextSplitter(chunk_size=500, chunk_overlap=30)
self.api_key = openai_api_key
self.cheap_llm = ChatOpenAI(
openai_api_key=openai_api_key,
temperature=0,
model_name="gpt-3.5-turbo",
openai_api_base=os.environ.get("OPENAI_API_BASE", None),
)
PROMPT = PromptTemplate(template=SUMMARIZE_PROMPT, input_variables=["text"])
self.summarize_chain = load_summarize_chain(
self.cheap_llm,
chain_type="map_reduce",
return_intermediate_steps=True,
map_prompt=PROMPT,
combine_prompt=PROMPT,
)
self.index_summary = None
self.index = None
self.tools = []
if "Pro" in self.model_name:
self.llm = ChatOpenAI(
openai_api_key=openai_api_key,
model_name="gpt-4-turbo-preview",
openai_api_base=os.environ.get("OPENAI_API_BASE", None),
)
else:
self.llm = ChatOpenAI(
openai_api_key=openai_api_key,
model_name="gpt-3.5-turbo",
openai_api_base=os.environ.get("OPENAI_API_BASE", None),
)
tools_to_enable = ["llm-math", "arxiv", "wikipedia"]
# if exists GOOGLE_CSE_ID and GOOGLE_API_KEY, enable google-search-results-json
if (
os.environ.get("GOOGLE_CSE_ID", None) is not None
and os.environ.get("GOOGLE_API_KEY", None) is not None
):
tools_to_enable.append("google-search-results-json")
else:
logging.warning(
"GOOGLE_CSE_ID and/or GOOGLE_API_KEY not found, using DuckDuckGo instead."
)
self.tools.append(
Tool.from_function(
func=self.google_search_simple,
name="ddg_search_json",
description="useful when you need to search the web.",
args_schema=GoogleSearchInput,
)
)
# if exists WOLFRAM_ALPHA_APPID, enable wolfram-alpha
if os.environ.get("WOLFRAM_ALPHA_APPID", None) is not None:
tools_to_enable.append("wolfram-alpha")
else:
logging.warning(
"WOLFRAM_ALPHA_APPID not found, wolfram-alpha is disabled."
)
# if exists SERPAPI_API_KEY, enable serpapi
if os.environ.get("SERPAPI_API_KEY", None) is not None:
tools_to_enable.append("serpapi")
else:
logging.warning("SERPAPI_API_KEY not found, serpapi is disabled.")
self.tools += load_tools(tools_to_enable, llm=self.llm)
self.tools.append(
Tool.from_function(
func=self.summary_url,
name="summary_webpage",
description="useful when you need to know the overall content of a webpage.",
args_schema=WebBrowsingInput,
)
)
self.tools.append(
StructuredTool.from_function(
func=self.ask_url,
name="ask_webpage",
description="useful when you need to ask detailed questions about a webpage.",
args_schema=WebAskingInput,
)
)
def google_search_simple(self, query):
results = []
with DDGS() as ddgs:
ddgs_gen = ddgs.text(query, backend="lite")
for r in islice(ddgs_gen, 10):
results.append(
{"title": r["title"], "link": r["href"], "snippet": r["body"]}
)
return str(results)
def handle_file_upload(self, files, chatbot, language):
"""if the model accepts multi modal input, implement this function"""
status = gr.Markdown()
if files:
index = construct_index(self.api_key, file_src=files)
assert index is not None, "获取索引失败"
self.index = index
status = i18n("索引构建完成")
# Summarize the document
logging.info(i18n("生成内容总结中……"))
with get_openai_callback() as cb:
os.environ["OPENAI_API_KEY"] = self.api_key
from langchain.chains.summarize import load_summarize_chain
from langchain.chat_models import ChatOpenAI
from langchain.prompts import PromptTemplate
prompt_template = (
"Write a concise summary of the following:\n\n{text}\n\nCONCISE SUMMARY IN "
+ language
+ ":"
)
PROMPT = PromptTemplate(
template=prompt_template, input_variables=["text"]
)
llm = ChatOpenAI()
chain = load_summarize_chain(
llm,
chain_type="map_reduce",
return_intermediate_steps=True,
map_prompt=PROMPT,
combine_prompt=PROMPT,
)
summary = chain(
{
"input_documents": list(
index.docstore.__dict__["_dict"].values()
)
},
return_only_outputs=True,
)["output_text"]
logging.info(f"Summary: {summary}")
self.index_summary = summary
chatbot.append((f"Uploaded {len(files)} files", summary))
logging.info(cb)
return gr.update(), chatbot, status
def query_index(self, query):
if self.index is not None:
retriever = self.index.as_retriever()
qa = RetrievalQA.from_chain_type(
llm=self.llm, chain_type="stuff", retriever=retriever
)
return qa.run(query)
else:
"Error during query."
def summary(self, text):
texts = Document(page_content=text)
texts = self.text_splitter.split_documents([texts])
return self.summarize_chain(
{"input_documents": texts}, return_only_outputs=True
)["output_text"]
def fetch_url_content(self, url):
response = requests.get(url)
soup = BeautifulSoup(response.text, "html.parser")
# 提取所有的文本
text = "".join(s.getText() for s in soup.find_all("p"))
logging.info(f"Extracted text from {url}")
return text
def summary_url(self, url):
text = self.fetch_url_content(url)
if text == "":
return "URL unavailable."
text_summary = self.summary(text)
url_content = "webpage content summary:\n" + text_summary
return url_content
def ask_url(self, url, question):
text = self.fetch_url_content(url)
if text == "":
return "URL unavailable."
texts = Document(page_content=text)
texts = self.text_splitter.split_documents([texts])
# use embedding
embeddings = OpenAIEmbeddings(
openai_api_key=self.api_key,
openai_api_base=os.environ.get("OPENAI_API_BASE", None),
)
# create vectorstore
db = FAISS.from_documents(texts, embeddings)
retriever = db.as_retriever()
qa = RetrievalQA.from_chain_type(
llm=self.cheap_llm, chain_type="stuff", retriever=retriever
)
return qa.run(f"{question} Reply in 中文")
def get_answer_at_once(self):
question = self.history[-1]["content"]
# llm=ChatOpenAI(temperature=0, model_name="gpt-3.5-turbo")
agent = initialize_agent(
self.tools,
self.llm,
agent=AgentType.STRUCTURED_CHAT_ZERO_SHOT_REACT_DESCRIPTION,
verbose=True,
)
reply = agent.run(input=f"{question} Reply in 简体中文")
return reply, -1
def get_answer_stream_iter(self):
question = self.history[-1]["content"]
it = CallbackToIterator()
manager = BaseCallbackManager(handlers=[ChuanhuCallbackHandler(it.callback)])
def thread_func():
tools = self.tools
if self.index is not None:
tools.append(
Tool.from_function(
func=self.query_index,
name="Query Knowledge Base",
description=f"useful when you need to know about: {self.index_summary}",
args_schema=WebBrowsingInput,
)
)
agent = create_openai_tools_agent(self.llm, tools, agent_prompt)
agent_executor = AgentExecutor(
agent=agent, tools=tools, callback_manager=manager, verbose=True
)
messages = []
for msg in self.history:
if msg["role"] == "user":
messages.append(HumanMessage(content=msg["content"]))
elif msg["role"] == "assistant":
messages.append(AIMessage(content=msg["content"]))
else:
logging.warning(f"Unknown role: {msg['role']}")
try:
reply = agent_executor.invoke(
{"input": question, "chat_history": messages}
)["output"]
except Exception as e:
import traceback
traceback.print_exc()
reply = str(e)
it.callback(reply)
it.finish()
t = Thread(target=thread_func)
t.start()
partial_text = ""
for value in it:
partial_text += value
yield partial_text
|