Spaces:
Runtime error
Runtime error
import gradio as gr | |
from peft import AutoPeftModelForCausalLM | |
from transformers import AutoTokenizer | |
""" | |
For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference | |
""" | |
def respond(message, history: list[tuple[str, str]], system_message, max_tokens, temperature, min_p,): | |
messages = [{"role": "system", "content": system_message}] | |
for val in history: | |
if val[0]: | |
messages.append({"role": "user", "content": val[0]}) | |
if val[1]: | |
messages.append({"role": "assistant", "content": val[1]}) | |
messages.append({"role": "user", "content": message}) | |
model = AutoPeftModelForCausalLM.from_pretrained( | |
"eforse01/lora_model", | |
) | |
tokenizer = AutoTokenizer.from_pretrained("eforse01/lora_model") | |
inputs = tokenizer.apply_chat_template( | |
messages, | |
tokenize = True, | |
add_generation_prompt = True, | |
return_tensors = "pt", | |
) | |
output = model.generate(input_ids = inputs, max_new_tokens = max_tokens, | |
use_cache = True, temperature = temperature, min_p = min_p) | |
response = tokenizer.batch_decode(output, skip_special_tokens=True)[0] | |
yield response.split('assistant')[-1] | |
""" | |
For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface | |
""" | |
demo = gr.ChatInterface( | |
respond, | |
additional_inputs=[ | |
gr.Textbox(value="You are a friendly Chatbot.", label="System message"), | |
gr.Slider(minimum=1, maximum=2048, value=2048, step=1, label="Max new tokens"), | |
gr.Slider(minimum=0.1, maximum=4.0, value=1.5, step=0.1, label="Temperature"), | |
gr.Slider( | |
minimum=0.1, | |
maximum=1.0, | |
value=0.99, | |
step=0.01, | |
label="Min-p", | |
), | |
], | |
) | |
if __name__ == "__main__": | |
demo.launch() |