import gradio as gr from peft import AutoPeftModelForCausalLM from transformers import AutoTokenizer """ For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference """ def respond(message, history: list[tuple[str, str]], system_message, max_tokens, temperature, min_p,): messages = [{"role": "system", "content": system_message}] for val in history: if val[0]: messages.append({"role": "user", "content": val[0]}) if val[1]: messages.append({"role": "assistant", "content": val[1]}) messages.append({"role": "user", "content": message}) model = AutoPeftModelForCausalLM.from_pretrained( "eforse01/lora_model", ) tokenizer = AutoTokenizer.from_pretrained("eforse01/lora_model") inputs = tokenizer.apply_chat_template( messages, tokenize = True, add_generation_prompt = True, return_tensors = "pt", ) output = model.generate(input_ids = inputs, max_new_tokens = max_tokens, use_cache = True, temperature = temperature, min_p = min_p) response = tokenizer.batch_decode(output, skip_special_tokens=True)[0] yield response.split('assistant')[-1] """ For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface """ demo = gr.ChatInterface( respond, additional_inputs=[ gr.Textbox(value="You are a friendly Chatbot.", label="System message"), gr.Slider(minimum=1, maximum=2048, value=2048, step=1, label="Max new tokens"), gr.Slider(minimum=0.1, maximum=4.0, value=1.5, step=0.1, label="Temperature"), gr.Slider( minimum=0.1, maximum=1.0, value=0.99, step=0.01, label="Min-p", ), ], ) if __name__ == "__main__": demo.launch()