maxdougly commited on
Commit
1c2e33b
1 Parent(s): d7b8973

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +23 -28
app.py CHANGED
@@ -1,20 +1,12 @@
1
  import gradio as gr
2
- from huggingface_hub import InferenceClient
 
3
 
4
  """
5
  For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
6
  """
7
- client = InferenceClient("eforse01/lora_model")
8
 
9
-
10
- def respond(
11
- message,
12
- history: list[tuple[str, str]],
13
- system_message,
14
- max_tokens,
15
- temperature,
16
- top_p,
17
- ):
18
  messages = [{"role": "system", "content": system_message}]
19
 
20
  for val in history:
@@ -25,20 +17,24 @@ def respond(
25
 
26
  messages.append({"role": "user", "content": message})
27
 
28
- response = ""
 
 
29
 
30
- for message in client.chat_completion(
 
31
  messages,
32
- max_tokens=max_tokens,
33
- stream=True,
34
- temperature=temperature,
35
- top_p=top_p,
36
- ):
37
- token = message.choices[0].delta.content
38
 
39
- response += token
40
- yield response
 
 
41
 
 
42
 
43
  """
44
  For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
@@ -47,18 +43,17 @@ demo = gr.ChatInterface(
47
  respond,
48
  additional_inputs=[
49
  gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
50
- gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
51
- gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
52
  gr.Slider(
53
  minimum=0.1,
54
  maximum=1.0,
55
- value=0.95,
56
- step=0.05,
57
- label="Top-p (nucleus sampling)",
58
  ),
59
  ],
60
  )
61
 
62
-
63
  if __name__ == "__main__":
64
- demo.launch()
 
1
  import gradio as gr
2
+ from peft import AutoPeftModelForCausalLM
3
+ from transformers import AutoTokenizer
4
 
5
  """
6
  For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
7
  """
 
8
 
9
+ def respond(message, history: list[tuple[str, str]], system_message, max_tokens, temperature, min_p,):
 
 
 
 
 
 
 
 
10
  messages = [{"role": "system", "content": system_message}]
11
 
12
  for val in history:
 
17
 
18
  messages.append({"role": "user", "content": message})
19
 
20
+ model = AutoPeftModelForCausalLM.from_pretrained(
21
+ "eforse01/lora_model",
22
+ )
23
 
24
+ tokenizer = AutoTokenizer.from_pretrained("eforse01/lora_model")
25
+ inputs = tokenizer.apply_chat_template(
26
  messages,
27
+ tokenize = True,
28
+ add_generation_prompt = True,
29
+ return_tensors = "pt",
30
+ )
 
 
31
 
32
+ output = model.generate(input_ids = inputs, max_new_tokens = max_tokens,
33
+ use_cache = True, temperature = temperature, min_p = min_p)
34
+
35
+ response = tokenizer.batch_decode(output, skip_special_tokens=True)[0]
36
 
37
+ yield response.split('assistant')[-1]
38
 
39
  """
40
  For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
 
43
  respond,
44
  additional_inputs=[
45
  gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
46
+ gr.Slider(minimum=1, maximum=2048, value=2048, step=1, label="Max new tokens"),
47
+ gr.Slider(minimum=0.1, maximum=4.0, value=1.5, step=0.1, label="Temperature"),
48
  gr.Slider(
49
  minimum=0.1,
50
  maximum=1.0,
51
+ value=0.99,
52
+ step=0.01,
53
+ label="Min-p",
54
  ),
55
  ],
56
  )
57
 
 
58
  if __name__ == "__main__":
59
+ demo.launch()