Spaces:
Runtime error
Runtime error
File size: 1,957 Bytes
74e922e 67d3f62 5152494 67d3f62 5152494 67d3f62 5152494 67d3f62 5152494 67d3f62 5152494 67d3f62 5152494 67d3f62 5152494 67d3f62 5152494 67d3f62 5152494 74e922e 5152494 67d3f62 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 |
import gradio as gr
from peft import AutoPeftModelForCausalLM
from transformers import AutoTokenizer
"""
For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
"""
def respond(message, history: list[tuple[str, str]], system_message, max_tokens, temperature, min_p,):
messages = [{"role": "system", "content": system_message}]
for val in history:
if val[0]:
messages.append({"role": "user", "content": val[0]})
if val[1]:
messages.append({"role": "assistant", "content": val[1]})
messages.append({"role": "user", "content": message})
model = AutoPeftModelForCausalLM.from_pretrained(
"eforse01/lora_model",
)
tokenizer = AutoTokenizer.from_pretrained("eforse01/lora_model")
inputs = tokenizer.apply_chat_template(
messages,
tokenize = True,
add_generation_prompt = True,
return_tensors = "pt",
)
output = model.generate(input_ids = inputs, max_new_tokens = max_tokens,
use_cache = True, temperature = temperature, min_p = min_p)
response = tokenizer.batch_decode(output, skip_special_tokens=True)[0]
yield response.split('assistant')[-1]
"""
For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
"""
demo = gr.ChatInterface(
respond,
additional_inputs=[
gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
gr.Slider(minimum=1, maximum=2048, value=2048, step=1, label="Max new tokens"),
gr.Slider(minimum=0.1, maximum=4.0, value=1.5, step=0.1, label="Temperature"),
gr.Slider(
minimum=0.1,
maximum=1.0,
value=0.99,
step=0.01,
label="Min-p",
),
],
)
if __name__ == "__main__":
demo.launch() |