File size: 15,517 Bytes
8c98072
655068e
 
 
c9413de
655068e
 
c9413de
655068e
 
 
 
c9413de
655068e
 
4f4406c
655068e
 
 
9a6b3d7
a7e6912
 
 
 
 
 
 
4f4406c
655068e
 
 
 
 
 
 
 
a7e6912
655068e
 
 
 
 
 
 
 
 
 
a7e6912
 
 
140e6ff
9a6b3d7
655068e
9a6b3d7
140e6ff
a7e6912
655068e
 
 
 
c9413de
655068e
 
 
 
9a6b3d7
a7e6912
655068e
c9413de
a7e6912
655068e
 
a7e6912
655068e
 
 
c9413de
655068e
 
 
 
 
 
 
 
 
 
c9413de
655068e
 
 
c9413de
655068e
 
c9413de
 
655068e
 
 
 
 
 
 
c9413de
655068e
 
c9413de
655068e
 
c9413de
655068e
 
 
 
 
 
 
a7e6912
655068e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e9eab63
655068e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4f4406c
655068e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b3132f8
a9f0d87
 
 
 
 
 
7a6ef66
a9f0d87
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7a6ef66
a9f0d87
7a6ef66
 
 
a9f0d87
 
 
 
 
655068e
 
a9f0d87
655068e
 
 
 
 
 
a9f0d87
655068e
a9f0d87
 
655068e
a9f0d87
655068e
a9f0d87
655068e
a9f0d87
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
655068e
e9eab63
a9f0d87
 
 
 
 
 
 
 
 
655068e
 
e9eab63
655068e
a9f0d87
655068e
 
 
 
 
 
 
 
 
a7e6912
655068e
 
 
 
 
 
a9f0d87
 
 
 
 
 
 
 
655068e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a7e6912
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
# FILE: api/ltx/ltx_aduc_pipeline.py
# DESCRIPTION: Final high-level orchestrator for LTX-Video generation.
# This version acts as a client to the specialized managers (LTX, VAE),
# focusing solely on the business logic of video generation workflows.

import gc
import json
import logging
import os
import shutil
import sys
import tempfile
import time
from pathlib import Path
from typing import Dict, List, Optional, Tuple, Union
import random
import torch
import yaml
import numpy as np
from PIL import Image
from api.ltx.ltx_utils import seed_everything
from utils.debug_utils import log_function_io
from managers.gpu_manager import gpu_manager
from api.ltx.ltx_aduc_manager import ltx_aduc_manager, LatentConditioningItem
from api.ltx.vae_aduc_pipeline import vae_aduc_pipeline
from tools.video_encode_tool import video_encode_tool_singleton


# ==============================================================================
# --- SETUP E IMPORTAÇÕES DO PROJETO ---
# ==============================================================================

# Configuração de logging e supressão de warnings
import warnings
warnings.filterwarnings("ignore")
logging.getLogger("huggingface_hub").setLevel(logging.ERROR)
log_level = logging.DEBUG
logging.basicConfig(level=log_level, format='[%(levelname)s] [%(name)s] %(message)s')

# --- Constantes de Configuração ---
DEPS_DIR = Path("/data")
LTX_VIDEO_REPO_DIR = DEPS_DIR / "LTX-Video"
RESULTS_DIR = Path("/app/output")
DEFAULT_FPS = 24.0
FRAMES_ALIGNMENT = 8

# Garante que a biblioteca LTX-Video seja importável
repo_path = str(LTX_VIDEO_REPO_DIR.resolve())
if repo_path not in sys.path:
    sys.path.insert(0, repo_path)

# ==============================================================================
# --- CLASSE DE SERVIÇO (O ORQUESTRADOR) ---
# ==============================================================================

class LtxAducPipeline:
    """
    Orchestrates the high-level logic of video generation, delegating all
    low-level tasks to specialized managers and utility modules.
    """

    @log_function_io
    def __init__(self):
        t0 = time.time()
        logging.info("Initializing VideoService Orchestrator...")
        
        if ltx_aduc_manager is None or vae_aduc_pipeline is None:
            raise RuntimeError("A required manager (LTX or VAE) failed to initialize. Aborting.")

        self.pipeline = ltx_aduc_manager.get_pipeline()
        self.main_device = self.pipeline.device
        self.vae_device = self.pipeline.vae.device
        self.config = ltx_aduc_manager.config
        
        self._apply_precision_policy()
        logging.info(f"VideoService ready. Using Main: {self.main_device}, VAE: {self.vae_device}. Startup time: {time.time() - t0:.2f}s")

    def finalize(self):
        """Cleans up GPU memory after a generation task."""
        gc.collect()
        if torch.cuda.is_available():
            with torch.cuda.device(self.main_device):
                torch.cuda.empty_cache()
            with torch.cuda.device(self.vae_device):
                torch.cuda.empty_cache()
            try: torch.cuda.ipc_collect()
            except Exception: pass

    # ==========================================================================
    # --- LÓGICA DE NEGÓCIO: ORQUESTRADOR PÚBLICO UNIFICADO ---
    # ==========================================================================

    @log_function_io
    def generate_low_resolution(
        self,
        prompt_list: List[str],
        initial_media_items: Optional[List[Tuple[Union[str, Image.Image, torch.Tensor], int, float]]] = None,
        **kwargs
    ) -> Tuple[Optional[str], Optional[str], Optional[int]]:
        """
        [UNIFIED ORCHESTRATOR] Generates a video from a list of prompts and raw media items.
        """
        logging.info("Starting unified low-resolution generation...")
        used_seed = self._get_random_seed()
        seed_everything(used_seed)
        logging.info(f"Using randomly generated seed: {used_seed}")

        if not prompt_list: raise ValueError("Prompt list cannot be empty.")
        is_narrative = len(prompt_list) > 1
        num_chunks = len(prompt_list)
        total_frames = self._calculate_aligned_frames(kwargs.get("duration", 4.0))
        frames_per_chunk = max(FRAMES_ALIGNMENT, (total_frames // num_chunks // FRAMES_ALIGNMENT) * FRAMES_ALIGNMENT)
        overlap_frames = 9 if is_narrative else 0
        
        initial_conditions = []
        if initial_media_items:
            logging.info("Delegating to VaeServer to prepare initial conditioning items...")
            initial_conditions = vae_aduc_pipeline.generate_conditioning_items(
                media_items=[item[0] for item in initial_media_items],
                target_frames=[item[1] for item in initial_media_items],
                strengths=[item[2] for item in initial_media_items],
                target_resolution=(kwargs['height'], kwargs['width'])
            )
        
        temp_latent_paths = []
        overlap_condition_item: Optional[LatentConditioningItem] = None
        
        try:
            for i, chunk_prompt in enumerate(prompt_list):
                logging.info(f"Processing scene {i+1}/{num_chunks}: '{chunk_prompt[:50]}...'")
                
                current_frames_base = frames_per_chunk if i < num_chunks - 1 else total_frames - ((num_chunks - 1) * frames_per_chunk)
                current_frames = current_frames_base + (overlap_frames if i > 0 else 0)
                current_frames = self._align(current_frames, alignment_rule='n*8+1')

                current_conditions = initial_conditions if i == 0 else []
                if overlap_condition_item: current_conditions.append(overlap_condition_item)

                chunk_latents = self._generate_single_chunk_low(
                    prompt=chunk_prompt, num_frames=current_frames, seed=used_seed + i,
                    conditioning_items=current_conditions, **kwargs
                )
                if chunk_latents is None: raise RuntimeError(f"Failed to generate latents for scene {i+1}.")

                if is_narrative and i < num_chunks - 1:
                    overlap_latents = chunk_latents[:, :, -overlap_frames:, :, :].clone()
                    overlap_condition_item = LatentConditioningItem(
                        latent_tensor=overlap_latents.cpu(),
                        media_frame_number=0,
                        conditioning_strength=1.0
                    )
                
                if i > 0: chunk_latents = chunk_latents[:, :, overlap_frames:, :, :]
                
                chunk_path = RESULTS_DIR / f"temp_chunk_{i}_{used_seed}.pt"
                torch.save(chunk_latents.cpu(), chunk_path)
                temp_latent_paths.append(chunk_path)
            
            base_filename = "narrative_video" if is_narrative else "single_video"
            all_tensors_cpu = [torch.load(p) for p in temp_latent_paths]
            final_latents = torch.cat(all_tensors_cpu, dim=2)

            video_path, latents_path = self._finalize_generation(final_latents, base_filename, used_seed)
            return video_path, latents_path, used_seed
        except Exception as e:
            logging.error(f"Error during unified generation: {e}", exc_info=True)
            return None, None, None
        finally:
            for path in temp_latent_paths:
                if path.exists(): path.unlink()
            self.finalize()

    # ==========================================================================
    # --- UNIDADES DE TRABALHO E HELPERS INTERNOS ---
    # ==========================================================================

    def _log_conditioning_items(self, items: List[LatentConditioningItem]):
        """
        Logs detailed information about a list of ConditioningItem objects.
        This is a dedicated debug helper function.
        """
        # Só imprime o log se o nível de logging for DEBUG
        if logging.getLogger().isEnabledFor(logging.INFO):
            log_str = ["\n" + "="*10 + " INFO: Conditioning Items " + "="*10]
            if not items:
                log_str.append("  -> Lista de conditioning_items está vazia.")
            else:
                for i, item in enumerate(items):
                    if hasattr(item, 'media_item') and isinstance(item.media_item, torch.Tensor):
                        t = item.media_item
                        log_str.append(
                            f"  -> Item [{i}]: "
                            f"Tensor(shape={list(t.shape)}, "
                            f"device='{t.device}', "
                            f"dtype={t.dtype}), "
                            f"Target Frame = {item.media_frame_number}, "
                            f"Strength = {item.conditioning_strength:.2f}"
                        )
                    else:
                        tt = str(itemvalue)
                        log_str.append(f"  -> Item [{i}]: Não contém um tensor válido.")
                        log_str.append(f" {tt[:70]}")
                        
            log_str.append("="*40 + "\n")
            
            # Usa o logger de debug para imprimir a mensagem completa
            logging.info("\n".join(log_str))

    
    @log_function_io
    def _generate_single_chunk_low(self, **kwargs) -> Optional[torch.Tensor]:
        """[WORKER] Calls the pipeline to generate a single chunk of latents."""
        height_padded, width_padded = (self._align(d) for d in (kwargs['height'], kwargs['width']))
        downscale_factor = self.config.get("downscale_factor", 0.6666666)
        vae_scale_factor = self.pipeline.vae_scale_factor
        downscaled_height = self._align(int(height_padded * downscale_factor), vae_scale_factor)
        downscaled_width = self._align(int(width_padded * downscale_factor), vae_scale_factor)

        # 1. Começa com a configuração padrão
        first_pass_config = self.config.get("first_pass", {}).copy()
        
        # 2. Aplica os overrides da UI, se existirem
        if kwargs.get("ltx_configs_override"):
            self._apply_ui_overrides(first_pass_config, kwargs.get("ltx_configs_override"))

        # 3. Monta o dicionário de argumentos SEM conditioning_items primeiro
        pipeline_kwargs = {
            "prompt": kwargs['prompt'],
            "negative_prompt": kwargs['negative_prompt'],
            "height": downscaled_height,
            "width": downscaled_width,
            "num_frames": kwargs['num_frames'],
            "frame_rate": int(DEFAULT_FPS),
            "generator": torch.Generator(device=self.main_device).manual_seed(kwargs['seed']),
            "output_type": "latent",
            #"conditioning_items": conditioning_items if conditioning_items else None,
            "media_items": None,
            "decode_timestep": self.config["decode_timestep"],
            "decode_noise_scale": self.config["decode_noise_scale"],
            "stochastic_sampling": self.config["stochastic_sampling"],
            "image_cond_noise_scale": 0.01,
            "is_video": True,
            "vae_per_channel_normalize": True,
            "mixed_precision": (self.config["precision"] == "mixed_precision"),
            "offload_to_cpu": False,
            "enhance_prompt": False,
            #"skip_layer_strategy": SkipLayerStrategy.AttentionValues,
            **first_pass_config
        }
        
        # --- Bloco de Logging para Depuração ---
        # 4. Loga os argumentos do pipeline (sem os tensores de condição)
        logging.info(f"\n[Info] Pipeline Arguments (BASE):\n {json.dumps(pipeline_kwargs, indent=2, default=str)}\n")
        
        # Loga os conditioning_items separadamente com a nossa função helper
        conditioning_items_list = kwargs.get('conditioning_items')
        self._log_conditioning_items(conditioning_items_list)
        pipeline_kwargs['conditioning_items'] = conditioning_items_list
        
        with torch.autocast(device_type=self.main_device.type, dtype=self.runtime_autocast_dtype, enabled="cuda" in self.main_device.type):
            latents_raw = self.pipeline(**pipeline_kwargs).images
        
        return latents_raw.to(self.main_device)
        
    @log_function_io
    def _finalize_generation(self, final_latents: torch.Tensor, base_filename: str, seed: int) -> Tuple[str, str]:
        """Delegates final decoding and encoding to specialist services."""
        logging.info("Finalizing generation: decoding latents and encoding video.")
        
        final_latents_path = RESULTS_DIR / f"latents_{base_filename}_{seed}.pt"
        torch.save(final_latents, final_latents_path)
        logging.info(f"Final latents saved to: {final_latents_path}")
        
        pixel_tensor = vae_aduc_pipeline.decode_to_pixels(
            final_latents, decode_timestep=float(self.config.get("decode_timestep", 0.05))
        )
        video_path = self._save_and_log_video(pixel_tensor, f"{base_filename}_{seed}")
        return str(video_path), str(final_latents_path)
    
    def _apply_ui_overrides(self, config_dict: Dict, overrides: Dict):
        """Applies advanced settings from the UI to a config dictionary."""
        # Override step counts
        for key in ["num_inference_steps", "skip_initial_inference_steps", "skip_final_inference_steps"]:
            ui_value = overrides.get(key)
            if ui_value and ui_value > 0:
                config_dict[key] = ui_value
                logging.info(f"Override: '{key}' set to {ui_value} by UI.")
  
    def _save_and_log_video(self, pixel_tensor: torch.Tensor, base_filename: str) -> Path:
        with tempfile.TemporaryDirectory() as temp_dir:
            temp_path = os.path.join(temp_dir, f"{base_filename}.mp4")
            video_encode_tool_singleton.save_video_from_tensor(pixel_tensor, temp_path, fps=DEFAULT_FPS)
            final_path = RESULTS_DIR / f"{base_filename}.mp4"
            shutil.move(temp_path, final_path)
            logging.info(f"Video saved successfully to: {final_path}")
            return final_path
    
    def _apply_precision_policy(self):
        precision = str(self.config.get("precision", "bfloat16")).lower()
        if precision in ["float8_e4m3fn", "bfloat16"]: self.runtime_autocast_dtype = torch.bfloat16
        elif precision == "mixed_precision": self.runtime_autocast_dtype = torch.float16
        else: self.runtime_autocast_dtype = torch.float32
        logging.info(f"Runtime precision policy set for autocast: {self.runtime_autocast_dtype}")

    def _align(self, dim: int, alignment: int = FRAMES_ALIGNMENT, alignment_rule: str = 'default') -> int:
        if alignment_rule == 'n*8+1':
             return ((dim - 1) // alignment) * alignment + 1
        return ((dim - 1) // alignment + 1) * alignment
    
    def _calculate_aligned_frames(self, duration_s: float, min_frames: int = 1) -> int:
        num_frames = int(round(duration_s * DEFAULT_FPS))
        aligned_frames = self._align(num_frames, alignment=FRAMES_ALIGNMENT)
        return max(aligned_frames, min_frames)

    def _get_random_seed(self) -> int:
        return random.randint(0, 2**32 - 1)

# ==============================================================================
# --- INSTANCIAÇÃO SINGLETON ---
# ==============================================================================
ltx_aduc_pipeline = LtxAducPipeline()
logging.info("Global VideoService orchestrator instance created successfully.")