Spaces:
Paused
Paused
File size: 8,335 Bytes
9185209 2f53bb4 db85898 9185209 db85898 975f84e 9185209 db85898 9185209 9ee0aed db85898 975f84e 9185209 db85898 9185209 db85898 9185209 c41e649 9bfadf5 c41e649 9185209 db85898 9185209 db85898 9185209 db85898 9185209 db85898 9185209 db85898 9185209 db85898 9185209 db85898 9185209 db85898 9185209 db4bbd0 ece26e1 02633f1 db4bbd0 9185209 db4bbd0 9185209 db85898 9185209 db85898 9185209 ae38dbc 9185209 b65c38b 02633f1 b65c38b 02633f1 9185209 ae38dbc db85898 2f53bb4 db85898 9185209 2f53bb4 9185209 2f53bb4 9185209 2f53bb4 9185209 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 |
# FILE: api/ltx/ltx_utils.py
# DESCRIPTION: Comprehensive, self-contained utility module for the LTX pipeline.
# Handles dependency path injection, model loading, pipeline creation, and tensor preparation.
import os
import random
import json
import logging
import time
import sys
from pathlib import Path
from typing import Dict, Optional, Tuple, Union
from huggingface_hub import hf_hub_download
import numpy as np
import torch
import torchvision.transforms.functional as TVF
from PIL import Image
from safetensors import safe_open
from transformers import T5EncoderModel, T5Tokenizer
# ==============================================================================
# --- CRITICAL: DEPENDENCY PATH INJECTION ---
# ==============================================================================
# Define o caminho para o repositório clonado
LTX_VIDEO_REPO_DIR = Path("/data/LTX-Video")
LTX_REPO_ID = "Lightricks/LTX-Video"
CACHE_DIR = os.environ.get("HF_HOME")
def add_deps_to_path():
"""
Adiciona o diretório do repositório LTX ao sys.path para garantir que suas
bibliotecas possam ser importadas.
"""
repo_path = str(LTX_VIDEO_REPO_DIR.resolve())
if repo_path not in sys.path:
sys.path.insert(0, repo_path)
logging.info(f"[ltx_utils] LTX-Video repository added to sys.path: {repo_path}")
# Executa a função imediatamente para configurar o ambiente antes de qualquer importação.
add_deps_to_path()
# ==============================================================================
# --- IMPORTAÇÕES DA BIBLIOTECA LTX-VIDEO (Após configuração do path) ---
# ==============================================================================
try:
from ltx_video.pipelines.pipeline_ltx_video import LTXVideoPipeline
from ltx_video.models.autoencoders.latent_upsampler import LatentUpsampler
from ltx_video.models.autoencoders.causal_video_autoencoder import CausalVideoAutoencoder
from ltx_video.models.transformers.transformer3d import Transformer3DModel
from ltx_video.models.transformers.symmetric_patchifier import SymmetricPatchifier
from ltx_video.schedulers.rf import RectifiedFlowScheduler
import ltx_video.pipelines.crf_compressor as crf_compressor
except ImportError as e:
raise ImportError(f"Could not import from LTX-Video library even after setting sys.path. Check repo integrity at '{LTX_VIDEO_REPO_DIR}'. Error: {e}")
# ==============================================================================
# --- FUNÇÕES DE CONSTRUÇÃO DE MODELO E PIPELINE ---
# ==============================================================================
def create_latent_upsampler(latent_upsampler_model_path: str, device: str) -> LatentUpsampler:
"""Loads the Latent Upsampler model from a checkpoint path."""
logging.info(f"Loading Latent Upsampler from: {latent_upsampler_model_path} to device: {device}")
latent_upsampler = LatentUpsampler.from_pretrained(latent_upsampler_model_path)
latent_upsampler.to(device)
latent_upsampler.eval()
return latent_upsampler
def build_ltx_pipeline_on_cpu(config: Dict) -> Tuple[LTXVideoPipeline, Optional[torch.nn.Module]]:
"""Builds the complete LTX pipeline and upsampler on the CPU."""
t0 = time.perf_counter()
logging.info("Building LTX pipeline on CPU...")
ckpt_path_str = hf_hub_download(repo_id=LTX_REPO_ID, filename=config["checkpoint_path"], cache_dir=CACHE_DIR)
ckpt_path = Path(ckpt_path_str)
if not ckpt_path.is_file():
raise FileNotFoundError(f"Main checkpoint file not found: {ckpt_path}")
logging.info(f"Building LTX pipeline ckpt:{ckpt_path_str}")
with safe_open(ckpt_path, framework="pt") as f:
metadata = f.metadata() or {}
config_str = metadata.get("config", "{}")
configs = json.loads(config_str)
allowed_inference_steps = configs.get("allowed_inference_steps")
vae = CausalVideoAutoencoder.from_pretrained(ckpt_path).to("cpu")
transformer = Transformer3DModel.from_pretrained(ckpt_path).to("cpu")
scheduler = RectifiedFlowScheduler.from_pretrained(ckpt_path)
text_encoder_path = config["text_encoder_model_name_or_path"]
text_encoder = T5EncoderModel.from_pretrained(text_encoder_path, subfolder="text_encoder").to("cpu")
tokenizer = T5Tokenizer.from_pretrained(text_encoder_path, subfolder="tokenizer")
patchifier = SymmetricPatchifier(patch_size=1)
precision = config.get("precision", "bfloat16")
if precision == "bfloat16":
vae.to(torch.bfloat16)
transformer.to(torch.bfloat16)
text_encoder.to(torch.bfloat16)
pipeline = LTXVideoPipeline(
transformer=transformer, patchifier=patchifier, text_encoder=text_encoder,
tokenizer=tokenizer, scheduler=scheduler, vae=vae,
allowed_inference_steps=allowed_inference_steps,
prompt_enhancer_image_caption_model=None, prompt_enhancer_image_caption_processor=None,
prompt_enhancer_llm_model=None, prompt_enhancer_llm_tokenizer=None,
)
vae = CausalVideoAutoencoder.from_pretrained(ckpt_path).to("cpu")
if precision == "bfloat16":
vae.to(torch.bfloat16)
latent_upsampler = None
if config.get("spatial_upscaler_model_path"):
spatial_path = config["spatial_upscaler_model_path"]
spatial_path_str = hf_hub_download(repo_id=LTX_REPO_ID, filename=config["spatial_upscaler_model_path"], cache_dir=CACHE_DIR)
spatial_path = Path(spatial_path_str)
if not spatial_path.is_file():
raise FileNotFoundError(f"Main checkpoint upscaler file not found: {spatial_path_str}")
logging.info(f"Building UPSCALER pipeline ckpt:{spatial_path_str}")
latent_upsampler = create_latent_upsampler(spatial_path, device="cpu")
if precision == "bfloat16":
latent_upsampler.to(torch.bfloat16)
logging.info(f"LTX pipeline built on CPU in {time.perf_counter() - t0:.2f}s")
return pipeline, latent_upsampler, vae
# ==============================================================================
# --- FUNÇÕES AUXILIARES (Seed, Preparação de Imagem) ---
# ==============================================================================
def seed_everything(seed: int):
"""Sets the seed for reproducibility."""
random.seed(seed)
os.environ['PYTHONHASHSEED'] = str(seed)
np.random.seed(seed)
torch.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False
def load_image_to_tensor_with_resize_and_crop(
image_input: Union[str, Image.Image],
target_height: int,
target_width: int,
) -> torch.Tensor:
"""Loads and processes an image into a 5D pixel tensor compatible with the LTX pipeline."""
if isinstance(image_input, str):
image = Image.open(image_input).convert("RGB")
elif isinstance(image_input, Image.Image):
image = image_input
else:
raise ValueError("image_input must be a file path or a PIL Image object")
input_width, input_height = image.size
aspect_ratio_target = target_width / target_height
aspect_ratio_frame = input_width / input_height
if aspect_ratio_frame > aspect_ratio_target:
new_width, new_height = int(input_height * aspect_ratio_target), input_height
x_start, y_start = (input_width - new_width) // 2, 0
else:
new_width, new_height = input_width, int(input_width / aspect_ratio_target)
x_start, y_start = 0, (input_height - new_height) // 2
image = image.crop((x_start, y_start, x_start + new_width, y_start + new_height))
image = image.resize((target_width, target_height), Image.Resampling.LANCZOS)
frame_tensor = TVF.to_tensor(image) # PIL -> tensor (C, H, W) in [0, 1] range
frame_tensor = TVF.gaussian_blur(frame_tensor, kernel_size=(3, 3))
frame_tensor_hwc = frame_tensor.permute(1, 2, 0)
frame_tensor_hwc = crf_compressor.compress(frame_tensor_hwc)
frame_tensor = frame_tensor_hwc.permute(2, 0, 1)
# Normalize to [-1, 1] range, which the VAE expects for encoding
frame_tensor = (frame_tensor * 2.0) - 1.0
# Create 5D tensor: (batch_size=1, channels=3, num_frames=1, height, width)
return frame_tensor.unsqueeze(0).unsqueeze(2) |