Spaces:
Sleeping
Sleeping
File size: 10,611 Bytes
16fec7b e0b5483 d816f20 16fec7b d816f20 78e3cae d816f20 78e3cae d816f20 c9a1d9b d816f20 16fec7b d816f20 c9a1d9b d816f20 16fec7b d816f20 16fec7b d816f20 16fec7b d816f20 16fec7b d816f20 1cd86c4 d816f20 16fec7b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 |
import gradio as gr
from transformers import pipeline
from datetime import datetime
import matplotlib.pyplot as plt
import io
import base64
from langdetect import detect
import qrcode
from wordcloud import WordCloud
import nltk
from nltk.tokenize import sent_tokenize
from better_profanity import profanity
import tempfile
import os
from PIL import Image # For PIL image handling
# Download NLTK data
nltk.download('punkt', quiet=True)
nltk.download('punkt_tab', quiet=True)
# Model options
models = {
"DistilBERT": "distilbert-base-uncased-finetuned-sst-2-english",
"Twitter RoBERTa": "cardiffnlp/twitter-roberta-base-sentiment-latest"
}
analyzer = None
history = []
sentiment_scores = []
feedback_log = []
# Load the selected or custom model
def load_model(model_name, custom_model_path=None):
global analyzer
if custom_model_path:
analyzer = pipeline("sentiment-analysis", model=custom_model_path)
return f"Loaded custom model from {custom_model_path}"
analyzer = pipeline("sentiment-analysis", model=models[model_name])
return f"Loaded {model_name} model."
# Highlight words
def highlight_words(text, sentiment, pos_words, neg_words):
words = text.split()
highlighted = []
pos_list = pos_words.split(",") if pos_words else ["love", "great", "happy", "awesome", "good"]
neg_list = neg_words.split(",") if neg_words else ["hate", "bad", "terrible", "awful", "sad"]
for word in words:
if sentiment == "POSITIVE" and word.lower() in [w.strip().lower() for w in pos_list]:
highlighted.append(f"**{word}**")
elif sentiment == "NEGATIVE" and word.lower() in [w.strip().lower() for w in neg_list]:
highlighted.append(f"**{word}**")
else:
highlighted.append(word)
return " ".join(highlighted)
# Sentiment analysis with context
def analyze_sentiment(text, model_name, pos_words, neg_words, intensity, custom_model_path=None, source="manual", compare_text=None):
if not text or not text.strip():
return "Error: Please enter some text.", "", "", None, None, "", None, ""
try:
if analyzer is None:
load_model(model_name, custom_model_path)
# Language and profanity check
lang = detect(text)
lang_note = " (Warning: Text may not be in English)" if lang != "en" else ""
profanity_note = " (Warning: Inappropriate language detected)" if profanity.contains_profanity(text) else ""
# Contextual analysis
sentences = sent_tokenize(text)
results = []
for sent in sentences:
result = analyzer(sent)[0]
label, score = result['label'], result['score']
if score < intensity:
label = "NEUTRAL"
results.append(f"{sent} -> {label} ({score:.2f})")
combined_result = analyzer(text)[0]
label, score = combined_result['label'], combined_result['score']
if score < intensity:
label, emoji = "NEUTRAL", "π"
else:
emoji = "π" if "POSITIVE" in label.upper() else "π" if "NEGATIVE" in label.upper() else "π"
confidence_note = " (Low confidence)" if score < 0.7 else ""
sentiment_result = f"Overall: {label} {emoji} (Confidence: {score:.2f}{confidence_note}{lang_note}{profanity_note})\n" + "\n".join(results)
highlighted_text = highlight_words(text, label, pos_words, neg_words)
# History and scores
timestamp = datetime.now().strftime('%H:%M:%S')
history.append(f"[{timestamp}] {source}: {text} -> {sentiment_result.splitlines()[0]}")
sentiment_scores.append((timestamp, 1 if "POSITIVE" in label.upper() else -1 if "NEGATIVE" in label.upper() else 0))
history_str = "\n".join([h for h in history[-5:]])
# Visuals
trend_img = generate_timeline()
wordcloud_img = generate_wordcloud(text)
qr_img = generate_qr(f"https://example.com/share?text={text}&result={sentiment_result.splitlines()[0].replace(' ', '+')}")
# Comparative analysis
compare_result = ""
if compare_text:
comp_result = analyzer(compare_text)[0]
comp_label, comp_score = comp_result['label'], comp_result['score']
comp_emoji = "π" if "POSITIVE" in comp_label.upper() else "π" if "NEGATIVE" in comp_label.upper() else "π"
compare_result = f"Comparison: {comp_label} {comp_emoji} (Confidence: {comp_score:.2f})"
return sentiment_result, highlighted_text, history_str, trend_img, wordcloud_img, qr_img, compare_result, ""
except Exception as e:
print(e)
return f"Error: {str(e)}", "", "", None, None, "", "", ""
# Fetch X post (simulated)
def fetch_x_post(x_url, model_name, pos_words, neg_words, intensity, custom_model_path):
sample_text = "Sample X post from " + x_url
return analyze_sentiment(sample_text, model_name, pos_words, neg_words, intensity, custom_model_path, source="X post")
# Generate timeline (return PIL Image)
def generate_timeline():
if not sentiment_scores:
return None
times, scores = zip(*sentiment_scores[-10:])
plt.figure(figsize=(6, 3))
plt.plot(times, scores, marker='o', linestyle='-', color='b')
plt.title("Sentiment Timeline")
plt.xlabel("Time")
plt.ylabel("Sentiment")
plt.ylim(-1.5, 1.5)
plt.xticks(rotation=45)
plt.tight_layout()
buf = io.BytesIO()
plt.savefig(buf, format="png")
buf.seek(0)
img = Image.open(buf) # Standard PIL Image
plt.close()
return img
# Generate word cloud (return PIL Image)
def generate_wordcloud(text):
wordcloud = WordCloud(width=400, height=200, background_color="white").generate(text)
return wordcloud.to_image() # Standard PIL Image
# Generate QR code (return standard PIL Image)
def generate_qr(url):
qr = qrcode.QRCode(version=1, box_size=10, border=4)
qr.add_data(url)
qr.make(fit=True)
qr_img = qr.make_image(fill="black", back_color="white") # Returns qrcode.image.pil.PilImage
buf = io.BytesIO()
qr_img.save(buf, format="PNG")
buf.seek(0)
return Image.open(buf) # Convert to standard PIL Image
# Export history with proper file handling
def export_history():
if not history:
return None
with tempfile.NamedTemporaryFile(delete=False, suffix=".txt", mode="w") as temp_file:
temp_file.write("\n".join(history))
temp_path = temp_file.name
return temp_path
# Log feedback
def log_feedback(rating):
feedback_log.append(f"[{datetime.now().strftime('%H:%M:%S')}] Rating: {rating}/5")
return f"Feedback received! ({len(feedback_log)} total)"
# Theme toggle function
def toggle_theme(light_mode):
return "Theme switched to " + ("Light" if light_mode else "Dark") + ". Please refresh the page to apply."
# Gradio interface
with gr.Blocks(theme=gr.themes.Monochrome()) as interface:
gr.Markdown("# Sentify")
gr.Markdown("Next-level sentiment analysis with context, comparison, and more!")
with gr.Row():
with gr.Column(scale=2):
model_dropdown = gr.Dropdown(choices=list(models.keys()), label="Select Model", value="DistilBERT")
custom_model = gr.File(label="Upload Custom Model (optional)", file_types=[".bin", ".pt"])
text_input = gr.Textbox(label="Enter text or X URL", placeholder="Type text or paste an X URL...")
compare_input = gr.Textbox(label="Compare with (optional)", placeholder="Enter second text...")
audio_input = gr.Audio(label="Or Speak Your Text", type="filepath")
pos_words = gr.Textbox(label="Custom Positive Words", placeholder="love, great")
neg_words = gr.Textbox(label="Custom Negative Words", placeholder="hate, bad")
intensity_slider = gr.Slider(0.5, 1.0, value=0.7, label="Sentiment Intensity Threshold")
x_button = gr.Button("Analyze X Post")
with gr.Column(scale=3):
sentiment_output = gr.Textbox(label="Sentiment Result (Contextual)")
highlighted_output = gr.Textbox(label="Highlighted Text")
history_output = gr.Textbox(label="Analysis History (Last 5)", lines=5)
trend_output = gr.Image(label="Sentiment Timeline")
wordcloud_output = gr.Image(label="Word Cloud")
qr_output = gr.Image(label="Shareable QR Code")
compare_output = gr.Textbox(label="Comparative Analysis")
with gr.Row():
export_button = gr.Button("Export History")
export_file = gr.File(label="Download History")
theme_toggle = gr.Checkbox(label="Light Mode", value=False)
theme_status = gr.Textbox(label="Theme Status", value="Dark (default)")
feedback_slider = gr.Slider(1, 5, step=1, label="Rate this analysis (1-5)")
feedback_output = gr.Textbox(label="Feedback Status")
gr.Examples(
examples=["I love this app! Itβs great.", "This is awful and sad.", "https://x.com/sample/post"],
inputs=[text_input]
)
# Event handlers
def audio_to_text(audio_file, model_name, pos_words, neg_words, intensity, custom_model_path):
text = "Simulated speech: I feel great today" if audio_file else ""
return analyze_sentiment(text, model_name, pos_words, neg_words, intensity, custom_model_path, source="audio")
text_input.change(
fn=analyze_sentiment,
inputs=[text_input, model_dropdown, pos_words, neg_words, intensity_slider, custom_model],
outputs=[sentiment_output, highlighted_output, history_output, trend_output, wordcloud_output, qr_output, compare_output, feedback_output]
)
x_button.click(
fn=fetch_x_post,
inputs=[text_input, model_dropdown, pos_words, neg_words, intensity_slider, custom_model],
outputs=[sentiment_output, highlighted_output, history_output, trend_output, wordcloud_output, qr_output, compare_output, feedback_output]
)
audio_input.change(
fn=audio_to_text,
inputs=[audio_input, model_dropdown, pos_words, neg_words, intensity_slider, custom_model],
outputs=[sentiment_output, highlighted_output, history_output, trend_output, wordcloud_output, qr_output, compare_output, feedback_output]
)
export_button.click(fn=export_history, inputs=None, outputs=export_file)
theme_toggle.change(fn=toggle_theme, inputs=theme_toggle, outputs=theme_status)
feedback_slider.change(fn=log_feedback, inputs=feedback_slider, outputs=feedback_output)
# Launch the app
interface.launch() |