Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
File size: 10,679 Bytes
9d22eee 2a5f9fb 3449f84 df66f6e 4445ad2 c0fa950 df66f6e 9d22eee 36e3010 c0fa950 3449f84 c0fa950 9d22eee c0fa950 2a5f9fb 9d22eee f976f1c b762711 9d22eee 9b2e755 9d22eee 9b2e755 359d8a9 9d22eee 359d8a9 71ecfbb 5639a81 9d22eee 2a5f9fb 1b2e131 b762711 36e3010 2a5f9fb 460ecf2 1b2e131 ec3a730 36e3010 359d8a9 2a5f9fb 36e3010 f976f1c 36e3010 1b2e131 f976f1c 36e3010 f976f1c c0fa950 36e3010 b1a1395 1b2e131 36e3010 b762711 36e3010 b1a1395 9b2e755 1b2e131 36e3010 359d8a9 c0fa950 b1a1395 2a5f9fb 36e3010 f976f1c 36e3010 1b2e131 f976f1c 36e3010 f976f1c c0fa950 36e3010 2a5f9fb 9d22eee 2a5f9fb 9d22eee 2a5f9fb 9d22eee 395f537 9839977 9d22eee 2a5f9fb 395f537 155aef4 2a5f9fb 9839977 2a5f9fb 9d22eee 2a5f9fb 9b2e755 2a5f9fb b1a1395 2a5f9fb 7625ef6 73d86a6 2a5f9fb 71ecfbb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 |
from dataclasses import dataclass, make_dataclass
from enum import Enum
from typing import List
import pandas as pd
from yaml import safe_load
from src.envs import GET_ORIGINAL_HF_LEADERBOARD_EVAL_RESULTS, TASK_CONFIG
def fields(raw_class):
return [v for k, v in raw_class.__dict__.items() if k[:2] != "__" and k[-2:] != "__"]
@dataclass
class Task:
benchmark: str
metric: str
col_name: str
baseline: float = 0.0
human_baseline: float = None
expert_human_baseline: float = None
few_shot: int = None
limit: int = None
task_list: List[str] = None
link: str = None
description: str = None
sources: List[str] = None
baseline_sources: List[str] = None
Tasks = Enum('Tasks', {k: Task(**v) for k, v in TASK_CONFIG['tasks'].items()})
# These classes are for user facing column names,
# to avoid having to change them all around the code
# when a modif is needed
@dataclass
class ColumnContent:
name: str
type: str
displayed_by_default: bool
hidden: bool = False
never_hidden: bool = False
dummy: bool = False
auto_eval_column_dict = []
# Init
auto_eval_column_dict.append(["model_type_symbol", ColumnContent, ColumnContent("T", "str", True, never_hidden=True)])
auto_eval_column_dict.append(["model", ColumnContent, ColumnContent("Model", "markdown", True, never_hidden=True)])
#Scores
auto_eval_column_dict.append(["average", ColumnContent, ColumnContent("Average β¬οΈ", "number", True)])
for task in Tasks:
auto_eval_column_dict.append([task.name, ColumnContent, ColumnContent(task.value.col_name, "number", True)])
# Model information
auto_eval_column_dict.append(["model_type", ColumnContent, ColumnContent("Type", "str", False)])
auto_eval_column_dict.append(["architecture", ColumnContent, ColumnContent("Architecture", "str", False)])
auto_eval_column_dict.append(["weight_type", ColumnContent, ColumnContent("Weight type", "str", False, True)])
auto_eval_column_dict.append(["precision", ColumnContent, ColumnContent("Precision", "str", False)])
auto_eval_column_dict.append(["merged", ColumnContent, ColumnContent("Merged", "bool", False)])
auto_eval_column_dict.append(["license", ColumnContent, ColumnContent("Hub License", "str", False)])
auto_eval_column_dict.append(["params", ColumnContent, ColumnContent("#Params (B)", "number", False)])
auto_eval_column_dict.append(["likes", ColumnContent, ColumnContent("Hub β€οΈ", "number", False)])
auto_eval_column_dict.append(["still_on_hub", ColumnContent, ColumnContent("Available on the hub", "bool", False, hidden=True)])
auto_eval_column_dict.append(["revision", ColumnContent, ColumnContent("Model sha", "str", False, False)])
auto_eval_column_dict.append(["flagged", ColumnContent, ColumnContent("Flagged", "bool", False, hidden=True)])
auto_eval_column_dict.append(["moe", ColumnContent, ColumnContent("MoE", "bool", False, hidden=True)])
auto_eval_column_dict.append(["eval_time", ColumnContent, ColumnContent("Evaluation Time (s)", "number", False)])
# Dummy column for the search bar (hidden by the custom CSS)
auto_eval_column_dict.append(["dummy", ColumnContent, ColumnContent("Model Name", "str", False, dummy=True)])
if GET_ORIGINAL_HF_LEADERBOARD_EVAL_RESULTS:
auto_eval_column_dict.append(["original_benchmark_average", ColumnContent, ColumnContent("π€ Leaderboard Average", "number", False)])
auto_eval_column_dict.append(["npm", ColumnContent, ColumnContent("NPM (Average) β¬οΈ", "number", False)])
# We use make dataclass to dynamically fill the scores from Tasks
AutoEvalColumn = make_dataclass("AutoEvalColumn", auto_eval_column_dict, frozen=True)
@dataclass(frozen=True)
class EvalQueueColumn: # Queue column
model = ColumnContent("model", "markdown", True)
revision = ColumnContent("revision", "str", True)
private = ColumnContent("private", "bool", True)
precision = ColumnContent("precision", "str", True)
weight_type = ColumnContent("weight_type", "str", "Original")
status = ColumnContent("status", "str", True)
baseline_row = {
AutoEvalColumn.model.name: "<p>Baseline</p>",
AutoEvalColumn.revision.name: "N/A",
AutoEvalColumn.precision.name: "?",
AutoEvalColumn.merged.name: False,
#AutoEvalColumn.average.name: 31.0,
#AutoEvalColumn.arc.name: 25.0,
#AutoEvalColumn.hellaswag.name: 25.0,
#AutoEvalColumn.mmlu.name: 25.0,
#AutoEvalColumn.truthfulqa.name: 25.0,
#AutoEvalColumn.winogrande.name: 50.0,
#AutoEvalColumn.gsm8k.name: 0.21,
AutoEvalColumn.dummy.name: "baseline",
AutoEvalColumn.model_type.name: "",
AutoEvalColumn.flagged.name: False,
AutoEvalColumn.model_type_symbol.name: "?",
AutoEvalColumn.architecture.name: None,
AutoEvalColumn.weight_type.name: None,
AutoEvalColumn.params.name: 0,
AutoEvalColumn.likes.name: 0,
AutoEvalColumn.license.name: "",
AutoEvalColumn.still_on_hub.name: False,
AutoEvalColumn.moe.name: False,
AutoEvalColumn.eval_time.name: 0.0
}
baseline_list = []
npm = []
for task in Tasks:
baseline_row[task.value.col_name] = task.value.baseline
res = task.value.baseline
if res is not None and (isinstance(res, float) or isinstance(res, int)):
baseline_list.append(res)
npm.append((res - task.value.baseline) / (100 - task.value.baseline))
baseline_row[AutoEvalColumn.average.name] = round(sum(baseline_list) / len(baseline_list), 2)
baseline_row[AutoEvalColumn.npm.name] = round(sum(npm) / len(npm), 2)
#if GET_ORIGINAL_HF_LEADERBOARD_EVAL_RESULTS:
baseline_row["π€ Leaderboard Average"] = None
# Average β¬οΈ human baseline is 0.897 (source: averaging human baselines below)
# ARC human baseline is 0.80 (source: https://lab42.global/arc/)
# HellaSwag human baseline is 0.95 (source: https://deepgram.com/learn/hellaswag-llm-benchmark-guide)
# MMLU human baseline is 0.898 (source: https://openreview.net/forum?id=d7KBjmI3GmQ)
# TruthfulQA human baseline is 0.94(source: https://arxiv.org/pdf/2109.07958.pdf)
# Winogrande: https://leaderboard.allenai.org/winogrande/submissions/public
# GSM8K: paper
# Define the human baselines
human_baseline_row = {
AutoEvalColumn.model.name: "<p>Human performance</p>",
AutoEvalColumn.revision.name: "N/A",
AutoEvalColumn.precision.name: "?",
#AutoEvalColumn.average.name: 92.75,
AutoEvalColumn.merged.name: False,
#AutoEvalColumn.arc.name: 80.0,
#AutoEvalColumn.hellaswag.name: 95.0,
#AutoEvalColumn.mmlu.name: 89.8,
#AutoEvalColumn.truthfulqa.name: 94.0,
#AutoEvalColumn.winogrande.name: 94.0,
#AutoEvalColumn.gsm8k.name: 100,
AutoEvalColumn.dummy.name: "human_baseline",
AutoEvalColumn.model_type.name: "",
AutoEvalColumn.flagged.name: False,
AutoEvalColumn.model_type_symbol.name: "?",
AutoEvalColumn.architecture.name: None,
AutoEvalColumn.weight_type.name: None,
AutoEvalColumn.params.name: 0,
AutoEvalColumn.likes.name: 0,
AutoEvalColumn.license.name: "",
AutoEvalColumn.still_on_hub.name: False,
AutoEvalColumn.moe.name: False,
AutoEvalColumn.eval_time.name: 0.0,
}
baseline_list = []
npm = []
for task in Tasks:
human_baseline_row[task.value.col_name] = task.value.human_baseline
res = task.value.human_baseline
if res is None or not (isinstance(res, float) or isinstance(res, int)):
res = 95.0
baseline_list.append(res)
npm.append((res - task.value.baseline) / (100 - task.value.baseline))
human_baseline_row[AutoEvalColumn.average.name] = round(sum(baseline_list) / len(baseline_list), 2)
human_baseline_row[AutoEvalColumn.npm.name] = round(sum(npm) / len(npm), 2)
#if GET_ORIGINAL_HF_LEADERBOARD_EVAL_RESULTS:
human_baseline_row["π€ Leaderboard Average"] = None
@dataclass
class ModelDetails:
name: str
symbol: str = "" # emoji, only for the model type
class ModelType(Enum):
PT = ModelDetails(name="pretrained", symbol="π’")
LA = ModelDetails(name="language adapted models (FP, FT, ...)", symbol="π")
FT = ModelDetails(name="fine-tuned/fp on domain-specific datasets", symbol="πΆ")
chat = ModelDetails(name="chat models (RLHF, DPO, IFT, ...)", symbol="π¬")
merges = ModelDetails(name="base merges and moerges", symbol="π€")
Unknown = ModelDetails(name="", symbol="?")
def to_str(self, separator=" "):
return f"{self.value.symbol}{separator}{self.value.name}"
@staticmethod
def from_str(type):
if "fine-tuned" in type or "πΆ" in type:
return ModelType.FT
if "language" in type or "π" in type:
return ModelType.LA
if "pretrained" in type or "π’" in type:
return ModelType.PT
if any([k in type for k in ["instruction-tuned", "RL-tuned", "chat", "π¦", "β", "π¬"]]):
return ModelType.chat
if "merge" in type or "π€" in type:
return ModelType.merges
return ModelType.Unknown
class WeightType(Enum):
Adapter = ModelDetails("Adapter")
Original = ModelDetails("Original")
Delta = ModelDetails("Delta")
class Precision(Enum):
float16 = ModelDetails("float16")
bfloat16 = ModelDetails("bfloat16")
qt_8bit = ModelDetails("8bit")
qt_4bit = ModelDetails("4bit")
qt_GPTQ = ModelDetails("GPTQ")
Unknown = ModelDetails("?")
def from_str(precision):
if precision in ["torch.float16", "float16"]:
return Precision.float16
if precision in ["torch.bfloat16", "bfloat16"]:
return Precision.bfloat16
if precision in ["8bit"]:
return Precision.qt_8bit
if precision in ["4bit"]:
return Precision.qt_4bit
if precision in ["GPTQ", "None"]:
return Precision.qt_GPTQ
return Precision.Unknown
# Column selection
COLS = [c.name for c in fields(AutoEvalColumn)]
TYPES = [c.type for c in fields(AutoEvalColumn)]
EVAL_COLS = [c.name for c in fields(EvalQueueColumn)]
EVAL_TYPES = [c.type for c in fields(EvalQueueColumn)]
BENCHMARK_COLS = [t.value.col_name for t in Tasks]
NUMERIC_INTERVALS = {
"?": pd.Interval(-1, 0, closed="right"),
"~1B": pd.Interval(0, 2, closed="right"),
"~3B": pd.Interval(2, 4, closed="right"),
"~7B": pd.Interval(4, 9, closed="right"),
"~13B": pd.Interval(9, 23, closed="right"),
"~35B": pd.Interval(23, 50, closed="right"),
"~70B": pd.Interval(50, 90, closed="right"),
"100B+": pd.Interval(90, 10000, closed="right"),
}
#Original HF LEaderboard tasks and metrics
ORIGINAL_TASKS = [
("arc:challenge", "acc_norm"),
("hellaswag", "acc_norm"),
("hendrycksTest", "acc"),
("truthfulqa:mc", "mc2"),
("winogrande", "acc"),
("gsm8k", "acc")
] |