Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
File size: 1,932 Bytes
6254b87 b1a1395 df66f6e 6254b87 b1a1395 439afd4 6254b87 460d762 439afd4 460d762 439afd4 699e8ff 8c49cb6 460d762 8c49cb6 460d762 8c49cb6 460d762 8c49cb6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 |
import os
from datetime import datetime, timezone
from huggingface_hub import HfApi
from huggingface_hub.hf_api import ModelInfo
from src.envs import RESULTS_REPO, QUEUE_REPO
API = HfApi()
def model_hyperlink(link, model_name):
return f'<a target="_blank" href="{link}" style="color: var(--link-text-color); text-decoration: underline;text-decoration-style: dotted;">{model_name}</a>'
def make_requests_clickable_model(model_name, json_path=None):
link = f"https://huggingface.co/{model_name}"
#details_model_name = model_name.replace("/", "__")
details_link = f"https://huggingface.co/datasets/{QUEUE_REPO}/tree/main"
if '/' in model_name:
details_link += f"/{model_name.split('/')[0]}"
if json_path is not None:
details_link = f"https://huggingface.co/datasets/{QUEUE_REPO}/blob/main/{json_path}"
return model_hyperlink(link, model_name) + " " + model_hyperlink(details_link, "📑")
def make_clickable_model(model_name, json_path=None):
link = f"https://huggingface.co/{model_name}"
#details_model_name = model_name.replace("/", "__")
details_link = f"https://huggingface.co/datasets/{RESULTS_REPO}/tree/main/{model_name}"
if json_path is not None:
details_link = f"https://huggingface.co/datasets/{RESULTS_REPO}/blob/main/{model_name}/{json_path}"
return model_hyperlink(link, model_name) + " " + model_hyperlink(details_link, "📑")
def styled_error(error):
return f"<p style='color: red; font-size: 20px; text-align: center;'>{error}</p>"
def styled_warning(warn):
return f"<p style='color: orange; font-size: 20px; text-align: center;'>{warn}</p>"
def styled_message(message):
return f"<p style='color: green; font-size: 20px; text-align: center;'>{message}</p>"
def has_no_nan_values(df, columns):
return df[columns].notna().all(axis=1)
def has_nan_values(df, columns):
return df[columns].isna().any(axis=1)
|