Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
File size: 13,113 Bytes
df66f6e 2a5f9fb df66f6e 2a5f9fb 5639a81 6da7311 2a5f9fb 20b060e 2a5f9fb 6da7311 8aaf0e7 2a5f9fb 3dfaf22 2a5f9fb 09cd30b b4fc70b 9d22eee 3dfaf22 9d22eee 6da7311 3dfaf22 2a5f9fb 3dfaf22 9b2e755 90fa47e d9f882d 0c7ef71 439afd4 359d8a9 71ecfbb b234783 59399bc 2a5f9fb 71ecfbb 3dfaf22 2a5f9fb 439afd4 2a5f9fb 0c7ef71 2a5f9fb 9d22eee 0c95be4 4717ca8 09cd30b 2a5f9fb 0c7ef71 2a5f9fb 4717ca8 2a5f9fb 4717ca8 2a5f9fb 4717ca8 002172c 2a5f9fb 71ecfbb 2a5f9fb 71ecfbb 2a5f9fb 71ecfbb 2a5f9fb a69553b 2a5f9fb a69553b 2a5f9fb 71ecfbb 2a5f9fb 002172c 2a5f9fb 09cd30b 4717ca8 09cd30b 359d8a9 0c95be4 2a5f9fb 3dfaf22 a3b0a0f 2a5f9fb 9b2e755 9d22eee 0c95be4 b1a1395 9b2e755 d9f882d b234783 6da7311 9b2e755 d9f882d 4717ca8 2a5f9fb 0c7ef71 71ecfbb 0c7ef71 2a5f9fb 3dfaf22 5639a81 f976f1c 5639a81 2a5f9fb 9d22eee 2a5f9fb 0c7ef71 9d22eee 3dfaf22 59399bc 2a5f9fb 9b2e755 359d8a9 5639a81 6da7311 2a5f9fb 5639a81 2a5f9fb 71ecfbb 2a5f9fb a3b0a0f 3dfaf22 2a5f9fb 3dfaf22 2a5f9fb a3b0a0f 4717ca8 2a5f9fb a3b0a0f 2a5f9fb 8aaf0e7 2a5f9fb a3b0a0f 2a5f9fb 0c7ef71 3dfaf22 2a5f9fb 3dfaf22 2a5f9fb 0c7ef71 59399bc 2a5f9fb 3dfaf22 2a5f9fb 3dfaf22 9b2e755 2a5f9fb aa7060a 2a5f9fb 59399bc 2a5f9fb 8aaf0e7 59399bc d9f882d 79aba72 2a5f9fb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 |
import glob
import json
import math
import os
from dataclasses import dataclass
from typing import List
import traceback
import dateutil
import numpy as np
from huggingface_hub import ModelCard
from src.display.formatting import make_clickable_model
from src.display.utils import AutoEvalColumn, ModelType, Tasks, Precision, Language, WeightType, ORIGINAL_TASKS
from src.envs import GET_ORIGINAL_HF_LEADERBOARD_EVAL_RESULTS, SHOW_INCOMPLETE_EVALS
@dataclass
class EvalResult:
# Also see src.display.utils.AutoEvalColumn for what will be displayed.
eval_name: str # org_model_precision (uid)
full_model: str # org/model (path on hub)
org: str
model: str
results: dict
model_sha: str = "" # commit hash
revision: str = "main"
precision: Precision = Precision.Unknown
model_type: ModelType = ModelType.Unknown # Pretrained, fine tuned, ...
weight_type: WeightType = WeightType.Original # Original or Adapter
main_language: Language = Language.Unknown
architecture: str = "Unknown" # From config file
license: str = "?"
likes: int = 0
num_params: int = 0
date: str = "" # submission date of request file
still_on_hub: bool = True
is_merge: bool = False
flagged: bool = False
status: str = "FINISHED"
tags: list = None
json_filename: str = None
eval_time: float = 0.0
original_benchmark_average: float = None
hidden: bool = False # Do not show on the leaderboard
num_evals_model_rev: int = 1
@classmethod
def init_from_json_file(self, json_filepath, is_original=False):
"""Inits the result from the specific model result file"""
with open(json_filepath) as fp:
data = json.load(fp)
json_filename = os.path.basename(json_filepath)
# We manage the legacy config format
config = data.get("config_general")
# Precision
precision = Precision.from_str(config.get("model_dtype"))
num_params = round(config.get("model_num_parameters", 0) / 1_000_000_000, 2)
revision = config.get("model_revision", "main")
model_sha = config.get("model_sha", "")
# Get model and org
org_and_model = config.get("model_name")
org_and_model = org_and_model.split("/", 1)
prefix = f"{precision.value.name}"
if revision != "main":
prefix = f"{revision}_{prefix}"
if len(org_and_model) == 1:
org = None
model = org_and_model[0]
result_key = f"{model}_{prefix}"
else:
org = org_and_model[0]
model = org_and_model[1]
result_key = f"{org}_{model}_{prefix}"
full_model = "/".join(org_and_model)
# Extract results available in this file (some results are split in several files)
results = {}
tasks = [(task.value.benchmark, task.value.metric) for task in Tasks]
if is_original:
tasks = ORIGINAL_TASKS
for task in tasks:
benchmark, metric = task
# We skip old mmlu entries
wrong_mmlu_version = False
if benchmark == "hendrycksTest":
for mmlu_k in ["harness|hendrycksTest-abstract_algebra|5", "hendrycksTest-abstract_algebra"]:
if mmlu_k in data["versions"] and data["versions"][mmlu_k] == 0:
wrong_mmlu_version = True
if wrong_mmlu_version:
continue
# Some truthfulQA values are NaNs
if benchmark == "truthfulqa:mc" and "harness|truthfulqa:mc|0" in data["results"]:
if math.isnan(float(data["results"]["harness|truthfulqa:mc|0"][metric])):
results[benchmark] = 0.0
continue
def get_metric(v):
res = v.get(metric, None)
if res is None:
res = v.get(metric + ',all', None)
if res is None:
res = v.get(metric + ',None', None)
if res is None:
res = v.get('main_score', None)
return res
# We average all scores of a given metric (mostly for mmlu)
accs = np.array([get_metric(v) for k, v in data["results"].items() if benchmark in k])
if accs.size == 0 or any([acc is None for acc in accs]):
continue
mean_acc = np.mean(accs) * 100.0
results[benchmark] = mean_acc
return self(
eval_name=result_key,
full_model=full_model,
org=org,
model=model,
results=results,
model_sha=model_sha,
revision=revision,
precision=precision,
json_filename=json_filename,
eval_time=config.get("total_evaluation_time_seconds", 0.0),
num_params=num_params
)
def update_with_request_file(self, requests_path):
"""Finds the relevant request file for the current model and updates info with it"""
request_file = get_request_file_for_model(requests_path, self.full_model, self.precision.value.name, self.revision)
try:
with open(request_file, "r") as f:
request = json.load(f)
self.model_type = ModelType.from_str(request.get("model_type", "Unknown"))
self.weight_type = WeightType[request.get("weight_type", "Original")]
self.num_params = max(request.get("params", 0), self.num_params)
self.date = request.get("submitted_time", "")
self.architecture = request.get("architectures", "Unknown")
self.status = request.get("status", "FAILED")
self.hidden = request.get("hidden", False)
self.main_language = request.get("main_language", "?")
except Exception as e:
self.status = "FAILED"
print(f"Could not find request file for {self.org}/{self.model}, precision {self.precision.value.name}, revision {self.revision}")
def update_with_dynamic_file_dict(self, file_dict):
self.license = file_dict.get("license", "?")
self.likes = file_dict.get("likes", 0)
self.still_on_hub = file_dict["still_on_hub"]
self.flagged = any("flagged" in tag for tag in file_dict["tags"])
self.tags = file_dict["tags"]
if 'original_llm_scores' in file_dict:
if len(file_dict['original_llm_scores']) > 0:
if self.precision.value.name in file_dict['original_llm_scores']:
self.original_benchmark_average = file_dict['original_llm_scores'][self.precision.value.name]
else:
self.original_benchmark_average = max(list(file_dict['original_llm_scores'].values()))
def to_dict(self):
"""Converts the Eval Result to a dict compatible with our dataframe display"""
average = []
npm = []
for task in Tasks:
if task.value.benchmark not in self.results:
continue
res = self.results[task.value.benchmark]
if res is None or np.isnan(res) or not (isinstance(res, float) or isinstance(res, int)):
continue
average.append(res)
npm.append((res-task.value.baseline)*100.0 / (100.0-task.value.baseline))
average = round(sum(average)/len(average), 2)
npm = round(sum(npm)/len(npm), 2)
data_dict = {
"eval_name": self.eval_name, # not a column, just a save name,
AutoEvalColumn.precision.name: self.precision.value.name,
AutoEvalColumn.model_type.name: self.model_type.value.name,
AutoEvalColumn.model_type_symbol.name: self.model_type.value.symbol,
AutoEvalColumn.weight_type.name: self.weight_type.value.name,
AutoEvalColumn.architecture.name: self.architecture,
AutoEvalColumn.model.name: make_clickable_model(self.full_model, self.json_filename, revision=self.revision, precision=self.precision.value.name, num_evals_same_model=self.num_evals_model_rev),
AutoEvalColumn.dummy.name: self.full_model,
AutoEvalColumn.revision.name: self.revision,
AutoEvalColumn.average.name: average,
AutoEvalColumn.license.name: self.license,
AutoEvalColumn.likes.name: self.likes,
AutoEvalColumn.params.name: self.num_params,
AutoEvalColumn.still_on_hub.name: self.still_on_hub,
AutoEvalColumn.merged.name: "merge" in self.tags if self.tags else False,
AutoEvalColumn.moe.name: ("moe" in self.tags if self.tags else False) or "moe" in self.full_model.lower(),
AutoEvalColumn.flagged.name: self.flagged,
AutoEvalColumn.eval_time.name: self.eval_time,
AutoEvalColumn.npm.name: npm,
AutoEvalColumn.main_language.name: self.main_language
}
for task in Tasks:
if task.value.benchmark in self.results:
data_dict[task.value.col_name] = self.results[task.value.benchmark]
if GET_ORIGINAL_HF_LEADERBOARD_EVAL_RESULTS:
data_dict[AutoEvalColumn.original_benchmark_average.name] = self.original_benchmark_average
return data_dict
def get_request_file_for_model(requests_path, model_name, precision, revision):
"""Selects the correct request file for a given model. Only keeps runs tagged as FINISHED"""
request_files = os.path.join(
requests_path,
f"{model_name}_eval_request_*.json",
)
request_files = glob.glob(request_files)
if revision is None or revision == "":
revision = "main"
# Select correct request file (precision)
request_file = ""
request_files = sorted(request_files, reverse=True)
for tmp_request_file in request_files:
with open(tmp_request_file, "r") as f:
req_content = json.load(f)
if req_content["revision"] is None or req_content["revision"] == "":
req_content["revision"] = "main"
if (
req_content["status"] in ["FINISHED", "PENDING_NEW_EVAL" if SHOW_INCOMPLETE_EVALS else "FINISHED"]
and req_content["precision"] == precision.split(".")[-1]
and req_content["revision"] == revision
):
request_file = tmp_request_file
return request_file
def get_raw_eval_results(results_path: str, requests_path: str, dynamic_path: str) -> list[EvalResult]:
"""From the path of the results folder root, extract all needed info for results"""
model_result_filepaths = []
for root, _, files in os.walk(results_path):
# We should only have json files in model results
if len(files) == 0 or any([not f.endswith(".json") for f in files]):
continue
# Sort the files by date
try:
files.sort(key=lambda x: x.removesuffix(".json").removeprefix("results_")[:-7])
except dateutil.parser._parser.ParserError:
files = [files[-1]]
for file in files:
model_result_filepaths.append(os.path.join(root, file))
with open(dynamic_path) as f:
dynamic_data = json.load(f)
count_model_rev = {}
eval_results = {}
for model_result_filepath in model_result_filepaths:
# Creation of result
eval_result = EvalResult.init_from_json_file(model_result_filepath)
eval_result.update_with_request_file(requests_path)
if eval_result.full_model in dynamic_data:
eval_result.update_with_dynamic_file_dict(dynamic_data[eval_result.full_model])
# Store results of same eval together
eval_name = eval_result.eval_name
if eval_name in eval_results.keys():
eval_results[eval_name].results.update({k: v for k, v in eval_result.results.items() if v is not None})
eval_results[eval_name].json_filename = eval_result.json_filename
else:
eval_results[eval_name] = eval_result
#count model_revision to display precision if duplicate
if eval_result.status in ["FINISHED", "PENDING_NEW_EVAL" if SHOW_INCOMPLETE_EVALS else "FINISHED"] and not eval_result.hidden:
model_rev_key = f"{eval_result.full_model}_{eval_result.revision}"
if model_rev_key not in count_model_rev:
count_model_rev[model_rev_key] = 1
else:
count_model_rev[model_rev_key] += 1
results = []
for v in eval_results.values():
try:
if v.status in ["FINISHED", "PENDING_NEW_EVAL" if SHOW_INCOMPLETE_EVALS else "FINISHED"] and not v.hidden:
model_rev_key = f"{v.full_model}_{v.revision}"
v.num_evals_model_rev = count_model_rev[model_rev_key]
v.to_dict() # we test if the dict version is complete
results.append(v)
except KeyError as e: # not all eval values present
continue
return results
|