File size: 10,938 Bytes
9d22eee
2a5f9fb
3449f84
df66f6e
 
9d22eee
 
 
 
 
 
 
 
 
36e3010
 
3449f84
 
 
 
 
9d22eee
 
3449f84
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2a5f9fb
 
 
 
 
 
 
 
 
 
 
 
 
9d22eee
 
 
 
 
 
 
 
 
 
 
 
 
b762711
9d22eee
 
 
9b2e755
9d22eee
9b2e755
 
9d22eee
 
 
 
 
2a5f9fb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b762711
36e3010
 
 
 
 
 
 
2a5f9fb
 
460ecf2
ec3a730
 
 
36e3010
 
 
 
 
2a5f9fb
 
36e3010
 
 
 
 
 
 
b1a1395
 
 
 
 
 
 
 
 
 
 
 
36e3010
b762711
36e3010
 
 
 
 
 
b1a1395
 
9b2e755
36e3010
 
 
 
 
 
 
 
b1a1395
2a5f9fb
36e3010
 
 
 
 
 
 
2a5f9fb
9d22eee
2a5f9fb
9d22eee
2a5f9fb
 
 
9d22eee
 
 
 
 
2a5f9fb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9d22eee
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2a5f9fb
 
 
 
9b2e755
 
2a5f9fb
 
 
 
b1a1395
2a5f9fb
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
from dataclasses import dataclass, make_dataclass
from enum import Enum
from typing import List
import pandas as pd

def fields(raw_class):
    return [v for k, v in raw_class.__dict__.items() if k[:2] != "__" and k[-2:] != "__"]


@dataclass
class Task:
    benchmark: str
    metric: str
    col_name: str
    baseline: float = 0.0
    human_baseline: float = 0.0
    few_shot: int = None
    limit: int = None
    task_list: List[str] = None
    link: str = None
    description: str = None

class Tasks(Enum):
    oab_exams = Task(
        benchmark="oab_exams",
        metric="exact_match",
        col_name="OAB Exams",
        baseline=25.0, 
        human_baseline=50.0,
        few_shot=5,
        limit=None,
        task_list=["oab_exams_generate"],
        link="https://huggingface.co/datasets/eduagarcia/oab_exams",
        description="OAB Exams is a dataset of 1,000 questions from the Brazilian Bar Association's exams."
    )
    brazilian_court_decisions_judgment = Task(
        benchmark="brazilian_court_decisions_judgment",
        metric="f1_macro",
        col_name="BR Court Decisions",
        baseline=33.33, 
        human_baseline=100.0,
        few_shot=5,
        limit=None,
        task_list=["brazilian_court_decisions_judgment_generate"],
        link="https://huggingface.co/datasets/joelniklaus/brazilian_court_decisions",
        description="A classification dataset of court decisions from the Tribunal de Justiça de Alagoas (TJAL, the State Supreme Court of Alagoas (Brazil)."
    )
    datalawyer_frases = Task(
        benchmark="datalawyer_frases",
        metric="f1_macro",
        col_name="DL Frases",
        baseline=10.0, 
        human_baseline=100.0,
        few_shot=15,
        limit=2000,
        task_list=["datalawyer_frases_generate"],
        link="https://huggingface.co/datasets/eduagarcia/portuguese_benchmark",
        description="A classification dataset"
    )
    rrip = Task(
        benchmark="rrip",
        metric="f1_macro",
        col_name="RRIP",
        baseline=12.5, 
        human_baseline=100.0,
        few_shot=15,
        limit=None,
        task_list=["rrip_generate"],
        link="https://huggingface.co/datasets/eduagarcia/portuguese_benchmark",
        description="A classification dataset"
    )
    #arc = Task("arc:challenge", "acc_norm", "ARC", 25.0, 80.0)
    #hellaswag = Task("hellaswag", "acc_norm", "HellaSwag", 25.0, 95.0)
    #mmlu = Task("hendrycksTest", "acc", "MMLU", 25.0, 89.8)
    #truthfulqa = Task("truthfulqa:mc", "mc2", "TruthfulQA", 25.0, 94.0)
    #winogrande = Task("winogrande", "acc", "Winogrande", 50.0, 94.0)
    #gsm8k = Task("gsm8k", "acc", "GSM8K", 0.21, 100)

# These classes are for user facing column names,
# to avoid having to change them all around the code
# when a modif is needed
@dataclass
class ColumnContent:
    name: str
    type: str
    displayed_by_default: bool
    hidden: bool = False
    never_hidden: bool = False
    dummy: bool = False

auto_eval_column_dict = []
# Init
auto_eval_column_dict.append(["model_type_symbol", ColumnContent, ColumnContent("T", "str", True, never_hidden=True)])
auto_eval_column_dict.append(["model", ColumnContent, ColumnContent("Model", "markdown", True, never_hidden=True)])
#Scores
auto_eval_column_dict.append(["average", ColumnContent, ColumnContent("Average ⬆️", "number", True)])
for task in Tasks:
    auto_eval_column_dict.append([task.name, ColumnContent, ColumnContent(task.value.col_name, "number", True)])
# Model information
auto_eval_column_dict.append(["model_type", ColumnContent, ColumnContent("Type", "str", False)])
auto_eval_column_dict.append(["architecture", ColumnContent, ColumnContent("Architecture", "str", False)])
auto_eval_column_dict.append(["weight_type", ColumnContent, ColumnContent("Weight type", "str", False, True)])
auto_eval_column_dict.append(["precision", ColumnContent, ColumnContent("Precision", "str", False)])
auto_eval_column_dict.append(["merged", ColumnContent, ColumnContent("Merged", "bool", False)])
auto_eval_column_dict.append(["license", ColumnContent, ColumnContent("Hub License", "str", False)])
auto_eval_column_dict.append(["params", ColumnContent, ColumnContent("#Params (B)", "number", False)])
auto_eval_column_dict.append(["likes", ColumnContent, ColumnContent("Hub ❤️", "number", False)])
auto_eval_column_dict.append(["still_on_hub", ColumnContent, ColumnContent("Available on the hub", "bool", False, hidden=True)])
auto_eval_column_dict.append(["revision", ColumnContent, ColumnContent("Model sha", "str", False, False)])
auto_eval_column_dict.append(["flagged", ColumnContent, ColumnContent("Flagged", "bool", False, hidden=True)])
auto_eval_column_dict.append(["moe", ColumnContent, ColumnContent("MoE", "bool", False, hidden=True)])
# Dummy column for the search bar (hidden by the custom CSS)
auto_eval_column_dict.append(["dummy", ColumnContent, ColumnContent("model_name_for_query", "str", False, dummy=True)])

# We use make dataclass to dynamically fill the scores from Tasks
AutoEvalColumn = make_dataclass("AutoEvalColumn", auto_eval_column_dict, frozen=True)

@dataclass(frozen=True)
class EvalQueueColumn:  # Queue column
    model = ColumnContent("model", "markdown", True)
    revision = ColumnContent("revision", "str", True)
    private = ColumnContent("private", "bool", True)
    precision = ColumnContent("precision", "str", True)
    weight_type = ColumnContent("weight_type", "str", "Original")
    status = ColumnContent("status", "str", True)


baseline_row = {
    AutoEvalColumn.model.name: "<p>Baseline</p>",
    AutoEvalColumn.revision.name: "N/A",
    AutoEvalColumn.precision.name: None,
    AutoEvalColumn.merged.name: False,
    #AutoEvalColumn.average.name: 31.0,
    #AutoEvalColumn.arc.name: 25.0,
    #AutoEvalColumn.hellaswag.name: 25.0,
    #AutoEvalColumn.mmlu.name: 25.0,
    #AutoEvalColumn.truthfulqa.name: 25.0,
    #AutoEvalColumn.winogrande.name: 50.0,
    #AutoEvalColumn.gsm8k.name: 0.21,
    AutoEvalColumn.dummy.name: "baseline",
    AutoEvalColumn.model_type.name: "",
    AutoEvalColumn.flagged.name: False,
    AutoEvalColumn.model_type_symbol.name: None,
    AutoEvalColumn.architecture.name: None,
    AutoEvalColumn.weight_type.name: None,
    AutoEvalColumn.params.name: 0,
    AutoEvalColumn.likes.name: 0,
    AutoEvalColumn.license.name: "",
    AutoEvalColumn.still_on_hub.name: False,
    AutoEvalColumn.moe.name: False
}

baseline_list = []
for task in Tasks:
    baseline_row[task.name] = task.value.baseline
    if task.value.baseline is not None:
        baseline_list.append(task.value.baseline)
baseline_row[AutoEvalColumn.average.name] = round(sum(baseline_list) / len(baseline_list), 2)

# Average ⬆️ human baseline is 0.897 (source: averaging human baselines below)
# ARC human baseline is 0.80 (source: https://lab42.global/arc/)
# HellaSwag human baseline is 0.95 (source: https://deepgram.com/learn/hellaswag-llm-benchmark-guide)
# MMLU human baseline is 0.898 (source: https://openreview.net/forum?id=d7KBjmI3GmQ)
# TruthfulQA human baseline is 0.94(source: https://arxiv.org/pdf/2109.07958.pdf)
# Winogrande: https://leaderboard.allenai.org/winogrande/submissions/public
# GSM8K: paper
# Define the human baselines
human_baseline_row = {
    AutoEvalColumn.model.name: "<p>Human performance</p>",
    AutoEvalColumn.revision.name: "N/A",
    AutoEvalColumn.precision.name: None,
    #AutoEvalColumn.average.name: 92.75,
    AutoEvalColumn.merged.name: False,
    #AutoEvalColumn.arc.name: 80.0,
    #AutoEvalColumn.hellaswag.name: 95.0,
    #AutoEvalColumn.mmlu.name: 89.8,
    #AutoEvalColumn.truthfulqa.name: 94.0,
    #AutoEvalColumn.winogrande.name: 94.0,
    #AutoEvalColumn.gsm8k.name: 100,
    AutoEvalColumn.dummy.name: "human_baseline",
    AutoEvalColumn.model_type.name: "",
    AutoEvalColumn.flagged.name: False,
    AutoEvalColumn.model_type_symbol.name: None,
    AutoEvalColumn.architecture.name: None,
    AutoEvalColumn.weight_type.name: None,
    AutoEvalColumn.params.name: 0,
    AutoEvalColumn.likes.name: 0,
    AutoEvalColumn.license.name: "",
    AutoEvalColumn.still_on_hub.name: False,
    AutoEvalColumn.moe.name: False
}

baseline_list = []
for task in Tasks:
    human_baseline_row[task.name] = task.value.human_baseline
    if task.value.human_baseline is not None:
        baseline_list.append(task.value.human_baseline)
human_baseline_row[AutoEvalColumn.average.name] = round(sum(baseline_list) / len(baseline_list), 2)

@dataclass
class ModelDetails:
    name: str
    symbol: str = "" # emoji, only for the model type


class ModelType(Enum):
    PT = ModelDetails(name="pretrained", symbol="🟢")
    FT = ModelDetails(name="fine-tuned", symbol="🔶")
    IFT = ModelDetails(name="instruction-tuned", symbol="⭕")
    RL = ModelDetails(name="RL-tuned", symbol="🟦")
    Unknown = ModelDetails(name="", symbol="?")

    def to_str(self, separator=" "):
        return f"{self.value.symbol}{separator}{self.value.name}"

    @staticmethod
    def from_str(type):
        if "fine-tuned" in type or "🔶" in type:
            return ModelType.FT
        if "pretrained" in type or "🟢" in type:
            return ModelType.PT
        if "RL-tuned" in type or "🟦" in type:
            return ModelType.RL
        if "instruction-tuned" in type or "⭕" in type:
            return ModelType.IFT
        return ModelType.Unknown

class WeightType(Enum):
    Adapter = ModelDetails("Adapter")
    Original = ModelDetails("Original")
    Delta = ModelDetails("Delta")

class Precision(Enum):
    float16 = ModelDetails("float16")
    bfloat16 = ModelDetails("bfloat16")
    qt_8bit = ModelDetails("8bit")
    qt_4bit = ModelDetails("4bit")
    qt_GPTQ = ModelDetails("GPTQ")
    Unknown = ModelDetails("?")

    def from_str(precision):
        if precision in ["torch.float16", "float16"]:
            return Precision.float16
        if precision in ["torch.bfloat16", "bfloat16"]:
            return Precision.bfloat16
        if precision in ["8bit"]:
            return Precision.qt_8bit
        if precision in ["4bit"]:
            return Precision.qt_4bit
        if precision in ["GPTQ", "None"]:
            return Precision.qt_GPTQ
        return Precision.Unknown
        



# Column selection
COLS = [c.name for c in fields(AutoEvalColumn)]
TYPES = [c.type for c in fields(AutoEvalColumn)]

EVAL_COLS = [c.name for c in fields(EvalQueueColumn)]
EVAL_TYPES = [c.type for c in fields(EvalQueueColumn)]

BENCHMARK_COLS = [t.value.col_name for t in Tasks]

NUMERIC_INTERVALS = {
    "?": pd.Interval(-1, 0, closed="right"),
    "~1.5": pd.Interval(0, 2, closed="right"),
    "~3": pd.Interval(2, 4, closed="right"),
    "~7": pd.Interval(4, 9, closed="right"),
    "~13": pd.Interval(9, 20, closed="right"),
    "~35": pd.Interval(20, 45, closed="right"),
    "~60": pd.Interval(45, 70, closed="right"),
    "70+": pd.Interval(70, 10000, closed="right"),
}