Spaces:
Running
Running
File size: 14,697 Bytes
17316c3 9c1d3fc 17316c3 9c1d3fc 17316c3 13573d3 17316c3 13573d3 17316c3 13573d3 17316c3 13573d3 17316c3 13573d3 17316c3 2c3dcf5 b8b7120 3229779 ca9b0c8 3229779 e1f071d 17316c3 05a69ae 9c1d3fc 17316c3 a53a581 17316c3 a53a581 17316c3 d23d11b 17316c3 13573d3 17316c3 d23d11b 17316c3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 |
import sys
import os
import io
import gradio as gr
import json
import requests
from PIL import Image
from flask import request
import sqlite3
from datetime import datetime, timedelta
# Initialize SQLite database
css = """
.example-image img{
display: flex; /* Use flexbox to align items */
justify-content: center; /* Center the image horizontally */
align-items: center; /* Center the image vertically */
height: 300px; /* Set the height of the container */
object-fit: contain; /* Preserve aspect ratio while fitting the image within the container */
}
.example-image img{
display: flex; /* Use flexbox to align items */
text-align: center;
justify-content: center; /* Center the image horizontally */
align-items: center; /* Center the image vertically */
height: 350px; /* Set the height of the container */
object-fit: contain; /* Preserve aspect ratio while fitting the image within the container */
}
.markdown-success-container {
background-color: #F6FFED;
padding: 20px;
margin: 20px;
border-radius: 1px;
border: 2px solid green;
text-align: center;
}
.markdown-fail-container {
background-color: #FFF1F0;
padding: 20px;
margin: 20px;
border-radius: 1px;
border: 2px solid red;
text-align: center;
}
.block-background {
# background-color: #202020; /* Set your desired background color */
border-radius: 5px;
}
"""
# Initialize SQLite database
conn = sqlite3.connect("ip_requests.db")
cursor = conn.cursor()
cursor.execute("""
CREATE TABLE IF NOT EXISTS requests (
ip_address TEXT PRIMARY KEY,
count INTEGER,
last_request TIMESTAMP
)
""")
conn.commit()
def track_requests(ip_address):
now = datetime.now()
cursor.execute("SELECT count, last_request FROM requests WHERE ip_address=?", (ip_address,))
result = cursor.fetchone()
if result:
count, last_request = result
last_request = datetime.strptime(last_request, "%Y-%m-%d %H:%M:%S")
if now - last_request > timedelta(days=1):
count = 0
else:
count = 0
count += 1
cursor.execute("""
INSERT OR REPLACE INTO requests (ip_address, count, last_request)
VALUES (?, ?, ?)
""", (ip_address, count, now.strftime("%Y-%m-%d %H:%M:%S")))
conn.commit()
return count
screenReplayThreshold = 0.5
portraitReplaceThreshold = 0.5
printedCopyThreshold = 0.5
def find_key_in_dict(d, target_key):
for key, value in d.items():
if key == target_key:
return value
elif isinstance(value, dict): # If the value is a dictionary, search recursively
result = find_key_in_dict(value, target_key)
if result is not None:
return result
return None
def json_to_html_table(data, image_keys):
html = "<table border='1' style='border-collapse: collapse; width: 100%;'>"
for key, value in data.items():
if isinstance(value, dict):
html += f"<tr><td colspan='2'><strong>{key}</strong></td></tr>"
for sub_key, sub_value in value.items():
if sub_key in image_keys:
html += f"<tr><td>{sub_key}</td><td><img src='data:image/png;base64,{sub_value}' width = '200' height= '100' /></td></tr>"
else:
html += f"<tr><td>{sub_key}</td><td>{sub_value}</td></tr>"
else:
if key in image_keys:
html += f"<tr><td>{key}</td><td><img src='data:image/png;base64,{value}' width = '200' height= '100' /></td></tr>"
else:
html += f"<tr><td>{key}</td><td>{value}</td></tr>"
html += "</table>"
return html
def check_liveness(frame):
if frame is None:
liveness_result = f"""<div class="markdown-fail-container"><p style="text-align: center; font-size: 20px; color: red;">Liveness Check Failed</p></div>"""
return [liveness_result, {"status": "error", "result": "select image file!"}]
img_bytes = io.BytesIO()
Image.open(frame).save(img_bytes, format="JPEG")
img_bytes.seek(0)
url = "https://api.cortex.cerebrium.ai/v4/p-4f1d877e/my-first-project/check-liveness/"
try:
files = [
('file', ('image.jpg', img_bytes, 'image/jpeg'))
]
headers = {
'Authorization': 'Bearer eyJhbGciOiJSUzI1NiIsInR5cCI6IkpXVCJ9.eyJwcm9qZWN0SWQiOiJwLTRmMWQ4NzdlIiwiaWF0IjoxNzM5MjM2NjA5LCJleHAiOjIwNTQ4MTI2MDl9.0LH0iOnqHZfKTH4GF5iTZ4qNj5vylCryo8rBnErljsq2qD2cpVTetCqhKtnbstTUEjuv6MAJw9jt58z-QNJfYLK9sJcnBhawTR3iM2Ap_bFyjlzg2LbgkwRPjUVJkkcuCRhBKyebXwvqQBvWyOtMq6UekauumbmYBRbA2-T4u343YD4tO2xIfsTsTXznALp1SechjRuys-3xo3ZQbUs05_p38fOFucKI-abc91Eq6sIOkLFjYEM68yuV0UBWl-OSpPu66e0SClroAVlKFDMPS9MY0Jr7X1pBYX4jew6vozj9D8Y-HS-KkdPFqJ7HrZOfQd0wGUgYJHyC58yReWXaRQ',
# 'Content-Type': 'application/json'
}
result = requests.post(url=url, files=files, headers=headers)
except:
liveness_result = f"""<div class="markdown-fail-container"><p style="text-align: center; font-size: 20px; color: red;">Liveness Check Failed</p></div>"""
return [liveness_result, {"status": "error", "result": "failed to open file!"}]
print("the result is", result)
if result.ok:
json_result = result.json()
if json_result.get("resultCode") == "Error":
liveness_result = f"""<div class="markdown-fail-container"><p style="text-align: center; font-size: 20px; color: red;">Liveness Check Failed</p></div>"""
return [liveness_result, {"status": "error", "result": "server error!"}]
if 'data' in json_result:
data = json_result['data']
print("the result data is is",data)
if data["IsLive"] :
liveness_result = f"""<div class="markdown-success-container"><p style="text-align: center; font-size: 20px; color: green;">Liveness Check: Live </p></div>"""
json_output = {"Is Live": "Success",
"document Type": data["DocumentType"],
# "Printed Cutout Check": "Failed" if printedCopy < printedCopyThreshold else "Success"
}
# Update json_result with the modified process_results
return [liveness_result, json_output]
else:
liveness_result = f"""<div class="markdown-fail-container"><p style="text-align: center; font-size: 20px; color: red;">Liveness Check: Fake </p></div>"""
json_output = {"Is Live": "Failed",
"document Type": data["DocumentType"],
# "Printed Cutout Check": "Failed" if printedCopy < printedCopyThreshold else "Success"
}
# Update json_result with the modified process_results
return [liveness_result, json_output]
liveness_result = f"""<div class="markdown-fail-container"><p style="text-align: center; font-size: 20px; color: red;">Liveness Check Failed</p></div>"""
return [liveness_result, {"status": "error", "result": "document not found!"}]
else:
liveness_result = f"""<div class="markdown-fail-container"><p style="text-align: center; font-size: 20px; color: red;">Liveness Check Failed</p></div>"""
return [liveness_result, {"status": "error", "result": f"{result.text}"}]
def idcard_recognition(frame1):
ip_address = request.remote_addr
request_count = track_requests(ip_address)
print("you have exceeded the daily limit of 5 requests", request_count)
if request_count > 3:
print("you have exceeded the daily limit of 5 requests")
return "You have exceeded the daily limit of 5 requests."
url = "https://api.cortex.cerebrium.ai/v4/p-4f1d877e/my-first-project/process-image/"
# url = "https://edreesi-ocr-api.hf.space/process-image/"
files = None
if frame1 is not None:
# Open the image using Pillow
img = Image.open(frame1).convert("RGB") # Convert to RGB to remove alpha channels
img_bytes = io.BytesIO()
# Save the image in JPEG format with consistent quality
img.save(img_bytes, format="JPEG", quality=95, optimize=True, exif=b"") # Strip EXIF metadata
img_bytes.seek(0) # Reset the file pointer
# Log the file size for debugging
print("Gradio File Size:", len(img_bytes.getvalue()), "bytes")
# Prepare the files payload
files = [
('file', ('image.jpg', img_bytes, 'image/jpeg'))
]
else:
return ['', None, None]
# headers = {"X-RapidAPI-Key": os.environ.get("API_KEY")}
headers = {}
# r = requests.post(url=url, files=files, headers=headers)
# r = requests.request("POST", url, headers=headers, data={}, files=files)
payload = json.dumps({"prompt": "your value here"})
headers = {
'Authorization': 'Bearer eyJhbGciOiJSUzI1NiIsInR5cCI6IkpXVCJ9.eyJwcm9qZWN0SWQiOiJwLTRmMWQ4NzdlIiwiaWF0IjoxNzM5MjM2NjA5LCJleHAiOjIwNTQ4MTI2MDl9.0LH0iOnqHZfKTH4GF5iTZ4qNj5vylCryo8rBnErljsq2qD2cpVTetCqhKtnbstTUEjuv6MAJw9jt58z-QNJfYLK9sJcnBhawTR3iM2Ap_bFyjlzg2LbgkwRPjUVJkkcuCRhBKyebXwvqQBvWyOtMq6UekauumbmYBRbA2-T4u343YD4tO2xIfsTsTXznALp1SechjRuys-3xo3ZQbUs05_p38fOFucKI-abc91Eq6sIOkLFjYEM68yuV0UBWl-OSpPu66e0SClroAVlKFDMPS9MY0Jr7X1pBYX4jew6vozj9D8Y-HS-KkdPFqJ7HrZOfQd0wGUgYJHyC58yReWXaRQ',
# 'Content-Type': 'application/json'
}
r = requests.request("POST", url, headers=headers, data={}, files=files)
# print(r.text)
print("Status Code:", r.status_code)
print("r Body:", r.text)
# r = requests.post(url=url, files=files, headers=headers)
print('the result is', r.json())
images = None
rawValues = {}
image_table_value = ""
result_table_dict = {
'portrait':'',
'type':'',
'score':'',
# 'countryName':'',
'FullName':'',
'Gender':'',
'PlaceOfBirth':'',
'DateOfBirth':'',
'IssuanceCenter':'',
'IdentityNumber':'',
'DateOfIssue':'',
'DateOfExpiry':'',
}
if 'data' in r.json():
data = r.json()['data']
for key, value in data.items():
if key == 'faceImage':
# Assign faceImage to the portrait field
result_table_dict['portrait'] = value
elif key == 'barcodeImage':
# Add barcodeImage to the result dictionary
result_table_dict['barcodeImage'] = value
else:
# Add other fields to the result dictionary
result_table_dict[key] = value
# Generate HTML for images
image_table_value = ""
if 'barcodeImage' in data:
image_table_value += (
"<tr>"
f"<td>barcodeImage</td>"
f"<td><img src='data:image/png;base64,{data['barcodeImage']}' width='200' height='100' /></td>"
"</tr>"
)
# Generate the final HTML table for images
images = (
"<table>"
"<tr>"
"<th>Field</th>"
"<th>Image</th>"
"</tr>"
f"{image_table_value}"
"</table>"
)
# Prepare raw values for JSON output
for key, value in r.json().items():
if key == 'data':
if 'faceImage' in value:
del value['faceImage']
if 'barcodeImage' in value:
del value['barcodeImage']
rawValues[key] = value
else:
rawValues[key] = value
# Generate the result HTML table
result = json_to_html_table(result_table_dict, {'portrait', 'barcodeImage'})
json_result = json.dumps(rawValues, indent=6)
return [result, json_result, images]
def launch_demo():
with gr.Blocks(css=css) as demo:
gr.Markdown(
f"""
<p style="font-size: 20px; font-weight: bold;">π Product Documentation</p>
<div style="display: flex; align-items: center;">
  <a href="" style="display: flex; align-items: center;"><img src="https://recognito.vision/wp-content/uploads/2024/05/book.png" style="width: 48px; margin-right: 5px;"/></a>
</div>
<p style="font-size: 20px; font-weight: bold;">π Visit Recognito</p>
<br/>
"""
)
with gr.Tabs():
with gr.Tab("ID Document Recognition"):
with gr.Row():
with gr.Column(scale=6):
with gr.Row():
with gr.Column(scale=6):
id_image_input1 = gr.Image(type='filepath', label='ID Card Image', elem_classes="example-image")
# with gr.Column(scale=3):
# id_image_input2 = gr.Image(type='filepath', label='Back', elem_classes="example-image")
# with gr.Row():
# id_examples = gr.Examples(
# examples=[['examples/1_f.png', 'examples/1_b.png'],
# ['examples/2_f.png', 'examples/2_b.png'],
# ['examples/3_f.png', 'examples/3_b.png'],
# ['examples/4.png', None]],
# inputs=[id_image_input1, id_image_input1],
# outputs=None,
# fn=idcard_recognition
# )
with gr.Blocks():
with gr.Column(scale=4, min_width=400, elem_classes="block-background"):
id_recognition_button = gr.Button("ID Card Recognition", variant="primary", size="lg")
with gr.Tab("Key Fields"):
id_result_output = gr.HTML()
with gr.Tab("Raw JSON"):
json_result_output = gr.JSON()
with gr.Tab("Images"):
image_result_output = gr.HTML()
id_recognition_button.click(idcard_recognition, inputs=id_image_input1, outputs=[id_result_output, json_result_output, image_result_output])
with gr.Tab("Id Card Liveness Detection"):
with gr.Row():
with gr.Column(scale=1):
id_image_input = gr.Image(label="Image", type='filepath', elem_classes="example-image")
gr.Examples(examples=['examples/1_f.png', 'examples/2_f.png', 'examples/3_f.png', 'examples/4.png'], inputs=id_image_input)
with gr.Blocks():
with gr.Column(scale=1, elem_classes="block-background"):
check_liveness_button = gr.Button("Check Document Liveness", variant="primary", size="lg")
liveness_result = gr.Markdown("")
json_output = gr.JSON()
check_liveness_button.click(check_liveness, inputs=id_image_input, outputs=[liveness_result, json_output])
gr.HTML('<a href="https://visitorbadge.io/status?path=https%3A%2F%2Fedreesi-card-recognition.hf.space%2F"><img src="https://api.visitorbadge.io/api/visitors?path=https%3A%2F%2Fedreesi-card-recognition.hf.space%2F&countColor=%23263759" /></a>')
demo.launch(server_name="0.0.0.0", server_port=7860, show_api=False)
if __name__ == '__main__':
launch_demo() |