File size: 3,614 Bytes
6908973
 
 
 
 
d19d91b
6908973
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d19d91b
6908973
 
 
 
 
 
d19d91b
6908973
 
 
 
 
 
 
 
 
 
 
 
d19d91b
6908973
 
 
 
 
d19d91b
6908973
 
 
d19d91b
6908973
 
 
 
 
 
d19d91b
6908973
 
 
 
 
d19d91b
6908973
 
 
 
 
 
 
d19d91b
6908973
d19d91b
 
6908973
d19d91b
6908973
 
 
d19d91b
6908973
 
 
 
 
d19d91b
 
6908973
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
import PIL
from PIL import Image, ImageDraw ,ImageFont
from matplotlib import pyplot as plt
import torchvision.transforms as T
import os
import torch
import yaml

def show_torch_img(img):
    img = to_np_image(img)
    plt.imshow(img)
    plt.axis("off")

def to_np_image(all_images):
    all_images = (all_images.permute(0, 2, 3, 1) * 127.5 + 128).clamp(0, 255).to(torch.uint8).cpu().numpy()[0]
    return all_images

def tensor_to_pil(tensor_imgs):
    if type(tensor_imgs) == list:
        tensor_imgs = torch.cat(tensor_imgs)
    tensor_imgs = (tensor_imgs / 2 + 0.5).clamp(0, 1)
    to_pil = T.ToPILImage()
    pil_imgs = [to_pil(img) for img in tensor_imgs]
    return pil_imgs

def pil_to_tensor(pil_imgs):
    to_torch = T.ToTensor()
    if type(pil_imgs) == PIL.Image.Image:
        tensor_imgs = to_torch(pil_imgs).unsqueeze(0)*2-1
    elif type(pil_imgs) == list:
        tensor_imgs = torch.cat([to_torch(pil_imgs).unsqueeze(0)*2-1 for img in pil_imgs]).to(device)
    else:
        raise Exception("Input need to be PIL.Image or list of PIL.Image")
    return tensor_imgs


## TODO implement this
# n = 10
# num_rows = 4
# num_col = n // num_rows
# num_col  = num_col + 1 if n % num_rows else num_col
# num_col
def add_margin(pil_img, top = 0, right = 0, bottom = 0,
                    left = 0, color = (255,255,255)):
    width, height = pil_img.size
    new_width = width + right + left
    new_height = height + top + bottom
    result = Image.new(pil_img.mode, (new_width, new_height), color)

    result.paste(pil_img, (left, top))
    return result

def image_grid(imgs, rows = 1, cols = None,
                    size = None,
                   titles = None, text_pos = (0, 0)):
    if type(imgs) == list and type(imgs[0]) == torch.Tensor:
        imgs = torch.cat(imgs)
    if type(imgs) == torch.Tensor:
        imgs = tensor_to_pil(imgs)

    if not size is None:
        imgs = [img.resize((size,size)) for img in imgs]
    if cols is None:
        cols = len(imgs)
    assert len(imgs) >= rows*cols

    top=20
    w, h = imgs[0].size
    delta = 0
    if len(imgs)> 1 and not imgs[1].size[1] == h:
        delta = top
        h = imgs[1].size[1]
    if not titles is  None:
        font = ImageFont.truetype("/usr/share/fonts/truetype/freefont/FreeMono.ttf",
                                    size = 20, encoding="unic")
        h = top + h
    grid = Image.new('RGB', size=(cols*w, rows*h+delta))
    for i, img in enumerate(imgs):

        if not titles is  None:
            img = add_margin(img, top = top, bottom = 0,left=0)
            draw = ImageDraw.Draw(img)
            draw.text(text_pos, titles[i],(0,0,0),
            font = font)
        if not delta == 0 and i > 0:
           grid.paste(img, box=(i%cols*w, i//cols*h+delta))
        else:
            grid.paste(img, box=(i%cols*w, i//cols*h))

    return grid


"""
input_folder - dataset folder
"""
def load_dataset(input_folder):
    # full_file_names = glob.glob(input_folder)
    # class_names = [x[0] for x in os.walk(input_folder)]
    class_names = next(os.walk(input_folder))[1]
    class_names[:] = [d for d in class_names if not d[0] == '.']
    file_names=[]
    for class_name in class_names:
        cur_path = os.path.join(input_folder, class_name)
        filenames = next(os.walk(cur_path), (None, None, []))[2]
        filenames = [f for f in filenames if not f[0] == '.']
        file_names.append(filenames)
    return class_names, file_names


def dataset_from_yaml(yaml_location):
    with open(yaml_location, 'r') as stream:
        data_loaded = yaml.safe_load(stream)

    return data_loaded