Spaces:
Sleeping
Sleeping
File size: 8,210 Bytes
748048a 0769641 aba3b27 908eafd aba3b27 908eafd aba3b27 748048a aba3b27 3d15ff1 8bfa5bb 3d15ff1 67ff28f 748048a 67ff28f adbaf3e 3d15ff1 adbaf3e 3d15ff1 adbaf3e aba3b27 adbaf3e aba3b27 adbaf3e aba3b27 adbaf3e aba3b27 adbaf3e aba3b27 adbaf3e aba3b27 1cb45a7 aba3b27 adbaf3e aba3b27 adbaf3e 67ff28f 09b20e0 748048a 09b20e0 748048a 09b20e0 adbaf3e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 |
from transformers import pipeline
from transformers import AutoTokenizer
from transformers import AutoModelForSeq2SeqLM
import streamlit as st
import fitz # PyMuPDF
from docx import Document
import re
import nltk
from presidio_analyzer import AnalyzerEngine, PatternRecognizer, RecognizerResult, Pattern
nltk.download('punkt')
def sentence_tokenize(text):
sentences = nltk.sent_tokenize(text)
return sentences
model_dir_large = 'edithram23/Redaction_Personal_info_v1'
tokenizer_large = AutoTokenizer.from_pretrained(model_dir_large)
model_large = AutoModelForSeq2SeqLM.from_pretrained(model_dir_large)
pipe1 = pipeline("token-classification", model="edithram23/new-bert-v2")
# model_dir_small = 'edithram23/Redaction'
# tokenizer_small = AutoTokenizer.from_pretrained(model_dir_small)
# model_small = AutoModelForSeq2SeqLM.from_pretrained(model_dir_small)
# def small(text, model=model_small, tokenizer=tokenizer_small):
# inputs = ["Mask Generation: " + text.lower() + '.']
# inputs = tokenizer(inputs, max_length=256, truncation=True, return_tensors="pt")
# output = model.generate(**inputs, num_beams=8, do_sample=True, max_length=len(text))
# decoded_output = tokenizer.batch_decode(output, skip_special_tokens=True)[0]
# predicted_title = decoded_output.strip()
# pattern = r'\[.*?\]'
# redacted_text = re.sub(pattern, '[redacted]', predicted_title)
# return redacted_text
# Initialize the analyzer engine
analyzer = AnalyzerEngine()
# Define a custom address recognizer using a regex pattern
address_pattern = Pattern(name="address", regex=r"\d+\s\w+\s(?:street|st|road|rd|avenue|ave|lane|ln|drive|dr|blvd|boulevard)\s*\w*", score=0.5)
address_recognizer = PatternRecognizer(supported_entity="ADDRESS", patterns=[address_pattern])
# Add the custom address recognizer to the analyzer
analyzer.registry.add_recognizer(address_recognizer)
analyzer.get_recognizers
# Define a function to extract entities
def combine_words(entities):
combined_entities = []
current_entity = None
for entity in entities:
if current_entity:
if current_entity['end'] == entity['start']:
# Combine the words without space
current_entity['word'] += entity['word'].replace('##', '')
current_entity['end'] = entity['end']
elif current_entity['end'] + 1 == entity['start']:
# Combine the words with a space
current_entity['word'] += ' ' + entity['word'].replace('##', '')
current_entity['end'] = entity['end']
else:
# Add the previous combined entity to the list
combined_entities.append(current_entity)
# Start a new entity
current_entity = entity.copy()
current_entity['word'] = current_entity['word'].replace('##', '')
else:
# Initialize the first entity
current_entity = entity.copy()
current_entity['word'] = current_entity['word'].replace('##', '')
# Add the last entity
if current_entity:
combined_entities.append(current_entity)
return combined_entities
def words_red_bert(text):
final=[]
sentences = sentence_tokenize(text)
for sentence in sentences:
x=[pipe1(sentence)]
m = combine_words(x[0])
for j in m:
if(j['entity']!='none' and len(j['word'])>1 and j['word']!=', '):
final.append(j['word'])
return final
def extract_entities(text):
entities = {
"NAME": [],
"PHONE_NUMBER": [],
"EMAIL": [],
"ADDRESS": [],
"LOCATION": [],
"IN_AADHAAR": [],
}
output = []
# Analyze the text for PII
results = analyzer.analyze(text=text, language='en')
for result in results:
if result.entity_type == "PERSON":
entities["NAME"].append(text[result.start:result.end])
output+=[text[result.start:result.end]]
elif result.entity_type == "PHONE_NUMBER":
entities["PHONE_NUMBER"].append(text[result.start:result.end])
output+=[text[result.start:result.end]]
elif result.entity_type == "EMAIL_ADDRESS":
entities["EMAIL"].append(text[result.start:result.end])
output+=[text[result.start:result.end]]
elif result.entity_type == "ADDRESS":
entities["ADDRESS"].append(text[result.start:result.end])
output+=[text[result.start:result.end]]
elif result.entity_type == 'LOCATION':
entities['LOCATION'].append(text[result.start:result.end])
output+=[text[result.start:result.end]]
elif result.entity_type == 'IN_AADHAAR':
entities['IN_PAN'].append(text[result.start:result.end])
output+=[text[result.start:result.end]]
return entities,output
def mask_generation(text, model=model_large, tokenizer=tokenizer_large):
if len(text) < 90:
text = text + '.'
# return small(text)
inputs = ["Mask Generation: " + text.lower() + '.']
inputs = tokenizer(inputs, max_length=512, truncation=True, return_tensors="pt")
output = model.generate(**inputs, num_beams=8, do_sample=True, max_length=len(text))
decoded_output = tokenizer.batch_decode(output, skip_special_tokens=True)[0]
predicted_title = decoded_output.strip()
pattern = r'\[.*?\]'
redacted_text = re.sub(pattern, '[redacted]', predicted_title)
return redacted_text
def redact_text(page, text):
text_instances = page.search_for(text)
for inst in text_instances:
page.add_redact_annot(inst, fill=(0, 0, 0))
page.apply_redactions()
def read_pdf(file):
pdf_document = fitz.open(stream=file.read(), filetype="pdf")
text = ""
for page_num in range(len(pdf_document)):
page = pdf_document.load_page(page_num)
text += page.get_text()
return text, pdf_document
def read_docx(file):
doc = Document(file)
text = "\n".join([para.text for para in doc.paragraphs])
return text
def read_txt(file):
text = file.read().decode("utf-8")
return text
def process_file(file):
if file.type == "application/pdf":
return read_pdf(file)
elif file.type == "application/vnd.openxmlformats-officedocument.wordprocessingml.document":
return read_docx(file), None
elif file.type == "text/plain":
return read_txt(file), None
else:
return "Unsupported file type.", None
st.title("Redaction")
uploaded_file = st.file_uploader("Upload a file", type=["pdf", "docx", "txt"])
if uploaded_file is not None:
file_contents, pdf_document = process_file(uploaded_file)
if pdf_document:
redacted_text = []
for pg in pdf_document:
text = pg.get_text()
sentences = sentence_tokenize(text)
for sent in sentences:
entities,words_out = extract_entities(sent)
bert_words = words_red_bert(sent)
new=[]
for w in words_out:
new+=w.split('\n')
words_out+=bert_words
words_out = [i for i in new if len(i)>2]
# print(words_out)
words_out=sorted(words_out, key=len,reverse=True)
redact_text+=words_out
print(words_out)
for i in words_out:
redact_text(pg,i)
st.text_area(pg.get_text())
output_pdf = "output_redacted.pdf"
pdf_document.save(output_pdf)
with open(output_pdf, "rb") as file:
st.download_button(
label="Download Processed PDF",
data=file,
file_name="processed_file.pdf",
mime="application/pdf",
)
else:
token = sentence_tokenize(file_contents)
final = ''
for i in range(0, len(token)):
final += mask_generation(token[i]) + '\n'
processed_text = final
st.text_area("OUTPUT", processed_text, height=400)
st.download_button(
label="Download Processed File",
data=processed_text,
file_name="processed_file.txt",
mime="text/plain",
)
|