File size: 5,006 Bytes
a23b6ea
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
import streamlit as st
import pandas as pd
import numpy as np
import torch
import torch.nn as nn
import matplotlib.pyplot as plt
from sklearn.preprocessing import MinMaxScaler

# Cargar los datos de los dos CSV
file1 = 'PARCIAL-AGUA-_2_.csv'
file2 = 'PARCIAL-AGUA-_3_.csv'

data1 = pd.read_csv(file1)
data2 = pd.read_csv(file2)

# Convertir la columna 'FECHA' a objetos datetime y filtrar por años
data1['FECHA'] = pd.to_datetime(data1['FECHA'])
data2['FECHA'] = pd.to_datetime(data2['FECHA'])

filtered_data1 = data1[data1['FECHA'].dt.year >= 2007]
filtered_data2 = data2[data2['FECHA'].dt.year >= 2007]

combined_values = np.concatenate([filtered_data1['VALOR-LS-CF-N'].values, filtered_data2['VALOR-LS-CF-N'].values]).reshape(-1, 1)

scaler = MinMaxScaler()
scaled_values = scaler.fit_transform(combined_values)

scaled_values1 = scaled_values[:len(filtered_data1)]
scaled_values2 = scaled_values[len(filtered_data1):]

def sliding_windows(data, seq_length):
    x, y = [], []
    for i in range(len(data) - seq_length):
        x.append(data[i:i + seq_length])
        y.append(data[i + seq_length])
    return np.array(x), np.array(y)

seq_length = 4
x_train, y_train = sliding_windows(scaled_values1, seq_length)
x_test, y_test = sliding_windows(scaled_values2, seq_length)

trainX = torch.Tensor(x_train)
trainY = torch.Tensor(y_train)
testX = torch.Tensor(x_test)
testY = torch.Tensor(y_test)

class LSTM(nn.Module):
    def __init__(self, input_size, hidden_size, num_layers, output_size):
        super(LSTM, self).__init__()
        self.hidden_size = hidden_size
        self.num_layers = num_layers
        self.lstm = nn.LSTM(input_size, hidden_size, num_layers, batch_first=True)
        self.fc = nn.Linear(hidden_size, output_size)

    def forward(self, x):
        h0 = torch.zeros(self.num_layers, x.size(0), self.hidden_size)
        c0 = torch.zeros(self.num_layers, x.size(0), self.hidden_size)
        out, _ = self.lstm(x, (h0, c0))
        out = self.fc(out[:, -1, :])
        return out

st.title('Predicción de Series de Tiempo')
st.sidebar.title('Parámetros del Modelo')

model_type = st.sidebar.selectbox('Selecciona el modelo', ('LSTM', 'Otro Modelo'))
num_epochs = st.sidebar.slider('Número de épocas', 100, 500, 200)
learning_rate = st.sidebar.number_input('Tasa de aprendizaje', 0.001, 0.1, 0.01, 0.001)

if model_type == 'LSTM':
    input_size = 1
    hidden_size = 50
    num_layers = 2
    output_size = 1

    model = LSTM(input_size, hidden_size, num_layers, output_size)

    criterion = nn.MSELoss()
    optimizer = torch.optim.Adam(model.parameters(), lr=learning_rate)

    if st.sidebar.button('Entrenar y Predecir'):
        for epoch in range(num_epochs):
            model.train()
            outputs = model(trainX)
            optimizer.zero_grad()
            loss = criterion(outputs, trainY)
            loss.backward()
            optimizer.step()
            if (epoch+1) % 100 == 0:
                st.write(f'Epoch [{epoch+1}/{num_epochs}], Loss: {loss.item():.4f}')

        model.eval()
        train_predict = model(trainX)
        test_predict = model(testX)

        train_predict = scaler.inverse_transform(train_predict.detach().numpy().reshape(-1, 1))
        trainY_plot = scaler.inverse_transform(trainY.numpy().reshape(-1, 1))
        test_predict = scaler.inverse_transform(test_predict.detach().numpy().reshape(-1, 1))
        testY_plot = scaler.inverse_transform(testY.numpy().reshape(-1, 1))

        train_data = pd.DataFrame({
            'Fecha': filtered_data1['FECHA'].values[seq_length:seq_length+len(trainY)],
            'Datos de entrenamiento': trainY_plot,
            'Predicciones de entrenamiento': train_predict
        })
    
        test_data = pd.DataFrame({
            'Fecha': filtered_data2['FECHA'].values[seq_length:seq_length+len(testY)],
            'Datos de prueba': testY_plot,
            'Predicciones de prueba': test_predict
        })
    
        # Concatenar los datos para tener una sola tabla
        combined_data = pd.concat([train_data, test_data])
    
        # Ajustar el índice
        combined_data.set_index('Fecha', inplace=True)
    
        # Mostrar la gráfica en Streamlit
        st.line_chart(combined_data)

        # fig, ax = plt.subplots(figsize=(12, 6))
        # ax.plot(filtered_data1['FECHA'].values[seq_length:seq_length+len(trainY)], trainY_plot, label='Datos de entrenamiento')
        # ax.plot(filtered_data1['FECHA'].values[seq_length:seq_length+len(trainY)], train_predict, label='Predicciones de entrenamiento')
        # ax.plot(filtered_data2['FECHA'].values[seq_length:seq_length+len(testY)], testY_plot, label='Datos de prueba')
        # ax.plot(filtered_data2['FECHA'].values[seq_length:seq_length+len(testY)], test_predict, label='Predicciones de prueba')
        # ax.set_xlabel('Fecha')
        # ax.set_ylabel('VALOR-LS-CF-N')
        # ax.set_title('Predicciones con LSTM')
        # ax.legend()
        # ax.grid(True)
        # st.pyplot(fig)