File size: 7,824 Bytes
a23b6ea
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4edca72
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a23b6ea
 
 
85727f6
4edca72
2fe28fc
a23b6ea
 
 
 
 
 
 
 
 
 
4edca72
a23b6ea
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
784572a
 
 
a23b6ea
 
 
784572a
 
 
a23b6ea
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4edca72
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
import streamlit as st
import pandas as pd
import numpy as np
import torch
import torch.nn as nn
import matplotlib.pyplot as plt
from sklearn.preprocessing import MinMaxScaler

# Cargar los datos de los dos CSV
file1 = 'PARCIAL-AGUA-_2_.csv'
file2 = 'PARCIAL-AGUA-_3_.csv'

data1 = pd.read_csv(file1)
data2 = pd.read_csv(file2)

# Convertir la columna 'FECHA' a objetos datetime y filtrar por años
data1['FECHA'] = pd.to_datetime(data1['FECHA'])
data2['FECHA'] = pd.to_datetime(data2['FECHA'])

filtered_data1 = data1[data1['FECHA'].dt.year >= 2007]
filtered_data2 = data2[data2['FECHA'].dt.year >= 2007]

combined_values = np.concatenate([filtered_data1['VALOR-LS-CF-N'].values, filtered_data2['VALOR-LS-CF-N'].values]).reshape(-1, 1)

scaler = MinMaxScaler()
scaled_values = scaler.fit_transform(combined_values)

scaled_values1 = scaled_values[:len(filtered_data1)]
scaled_values2 = scaled_values[len(filtered_data1):]

def sliding_windows(data, seq_length):
    x, y = [], []
    for i in range(len(data) - seq_length):
        x.append(data[i:i + seq_length])
        y.append(data[i + seq_length])
    return np.array(x), np.array(y)

seq_length = 4
x_train, y_train = sliding_windows(scaled_values1, seq_length)
x_test, y_test = sliding_windows(scaled_values2, seq_length)

trainX = torch.Tensor(x_train)
trainY = torch.Tensor(y_train)
testX = torch.Tensor(x_test)
testY = torch.Tensor(y_test)

class LSTM(nn.Module):
    def __init__(self, input_size, hidden_size, num_layers, output_size):
        super(LSTM, self).__init__()
        self.hidden_size = hidden_size
        self.num_layers = num_layers
        self.lstm = nn.LSTM(input_size, hidden_size, num_layers, batch_first=True)
        self.fc = nn.Linear(hidden_size, output_size)

    def forward(self, x):
        h0 = torch.zeros(self.num_layers, x.size(0), self.hidden_size)
        c0 = torch.zeros(self.num_layers, x.size(0), self.hidden_size)
        out, _ = self.lstm(x, (h0, c0))
        out = self.fc(out[:, -1, :])
        return out

#CLASE GRU
class GRU(nn.Module):
    def __init__(self, input_size, hidden_size, num_layers, output_size):
        super(GRU, self).__init__()
        self.hidden_size = hidden_size
        self.num_layers = num_layers
        self.gru = nn.GRU(input_size, hidden_size, num_layers, batch_first=True)
        self.fc = nn.Linear(hidden_size, output_size)
        self.relu = nn.ReLU()
        self.dropout = nn.Dropout(0.3)  # Dropout para regularización

        # Inicialización de los pesos de la capa lineal
        nn.init.xavier_normal_(self.fc.weight)

    def forward(self, x):
        # Inicialización de los estados ocultos
        h0 = torch.zeros(self.num_layers, x.size(0), self.hidden_size).to(x.device)

        # Propagación a través de la capa GRU
        out, _ = self.gru(x, h0)

        # Última capa GRU
        out = self.fc(out[:, -1, :])

        return out

st.title('Predicción de Series de Tiempo')
st.sidebar.title('Parámetros del Modelo')

model_type = st.sidebar.selectbox('Selecciona el modelo', ('LSTM', 'GRU'))
num_epochs = st.sidebar.slider('Número de épocas', 100, 200)
learning_rate = st.sidebar.number_input('Tasa de aprendizaje', 0.001, 0.1, 0.01, 0.001)

if model_type == 'LSTM':
    input_size = 1
    hidden_size = 50
    num_layers = 2
    output_size = 1

    model = LSTM(input_size, hidden_size, num_layers, output_size)

    criterion = nn.MSELoss()
    optimizer = torch.optim.Adam(model.parameters(), lr=learning_rate)

    if st.sidebar.button('Entrenar y Predecir'):
        for epoch in range(num_epochs):
            model.train()
            outputs = model(trainX)
            optimizer.zero_grad()
            loss = criterion(outputs, trainY)
            loss.backward()
            optimizer.step()
            if (epoch+1) % 100 == 0:
                st.write(f'Epoch [{epoch+1}/{num_epochs}], Loss: {loss.item():.4f}')

        model.eval()
        train_predict = model(trainX)
        test_predict = model(testX)

        train_predict = scaler.inverse_transform(train_predict.detach().numpy().reshape(-1, 1))
        trainY_plot = scaler.inverse_transform(trainY.numpy().reshape(-1, 1))
        test_predict = scaler.inverse_transform(test_predict.detach().numpy().reshape(-1, 1))
        testY_plot = scaler.inverse_transform(testY.numpy().reshape(-1, 1))

        train_data = pd.DataFrame({
            'Fecha': filtered_data1['FECHA'].values[seq_length:seq_length+len(trainY)],
            'Datos de entrenamiento': trainY_plot.ravel(),
            'Predicciones de entrenamiento': train_predict.ravel()
        })
    
        test_data = pd.DataFrame({
            'Fecha': filtered_data2['FECHA'].values[seq_length:seq_length+len(testY)],
            'Datos de prueba': testY_plot.ravel(),
            'Predicciones de prueba': test_predict.ravel()
        })
    
        # Concatenar los datos para tener una sola tabla
        combined_data = pd.concat([train_data, test_data])
    
        # Ajustar el índice
        combined_data.set_index('Fecha', inplace=True)
    
        # Mostrar la gráfica en Streamlit
        st.line_chart(combined_data)

        # fig, ax = plt.subplots(figsize=(12, 6))
        # ax.plot(filtered_data1['FECHA'].values[seq_length:seq_length+len(trainY)], trainY_plot, label='Datos de entrenamiento')
        # ax.plot(filtered_data1['FECHA'].values[seq_length:seq_length+len(trainY)], train_predict, label='Predicciones de entrenamiento')
        # ax.plot(filtered_data2['FECHA'].values[seq_length:seq_length+len(testY)], testY_plot, label='Datos de prueba')
        # ax.plot(filtered_data2['FECHA'].values[seq_length:seq_length+len(testY)], test_predict, label='Predicciones de prueba')
        # ax.set_xlabel('Fecha')
        # ax.set_ylabel('VALOR-LS-CF-N')
        # ax.set_title('Predicciones con LSTM')
        # ax.legend()
        # ax.grid(True)
        # st.pyplot(fig)
else :
    input_size = 1
    hidden_size = 50
    num_layers = 2
    output_size = 1

    model = GRU(input_size, hidden_size, num_layers, output_size)

    criterion = nn.MSELoss()
    optimizer = torch.optim.Adam(model.parameters(), lr=learning_rate)

    if st.sidebar.button('Entrenar y Predecir'):
        for epoch in range(num_epochs):
            model.train()
            outputs = model(trainX)
            optimizer.zero_grad()
            loss = criterion(outputs, trainY)
            loss.backward()
            optimizer.step()
            if (epoch+1) % 100 == 0:
                st.write(f'Epoch [{epoch+1}/{num_epochs}], Loss: {loss.item():.4f}')

        model.eval()
        train_predict = model(trainX)
        test_predict = model(testX)

        train_predict = scaler.inverse_transform(train_predict.detach().numpy().reshape(-1, 1))
        trainY_plot = scaler.inverse_transform(trainY.numpy().reshape(-1, 1))
        test_predict = scaler.inverse_transform(test_predict.detach().numpy().reshape(-1, 1))
        testY_plot = scaler.inverse_transform(testY.numpy().reshape(-1, 1))

        train_data = pd.DataFrame({
            'Fecha': filtered_data1['FECHA'].values[seq_length:seq_length+len(trainY)],
            'Datos de entrenamiento': trainY_plot.ravel(),
            'Predicciones de entrenamiento': train_predict.ravel()
        })
    
        test_data = pd.DataFrame({
            'Fecha': filtered_data2['FECHA'].values[seq_length:seq_length+len(testY)],
            'Datos de prueba': testY_plot.ravel(),
            'Predicciones de prueba': test_predict.ravel()
        })
    
        # Concatenar los datos para tener una sola tabla
        combined_data = pd.concat([train_data, test_data])
    
        # Ajustar el índice
        combined_data.set_index('Fecha', inplace=True)
    
        # Mostrar la gráfica en Streamlit
        st.line_chart(combined_data)