File size: 4,994 Bytes
a23b6ea
 
 
 
 
 
 
 
32521d4
 
 
 
 
a23b6ea
32521d4
a23b6ea
 
 
 
 
 
 
32521d4
a23b6ea
 
 
 
 
 
 
 
 
 
32521d4
a23b6ea
32521d4
4edca72
 
 
 
 
 
 
32521d4
4edca72
32521d4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4edca72
a23b6ea
 
 
 
 
32521d4
 
 
 
a23b6ea
 
4edca72
a23b6ea
 
32521d4
 
4edca72
32521d4
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
import streamlit as st
import pandas as pd
import numpy as np
import torch
import torch.nn as nn
import matplotlib.pyplot as plt
from sklearn.preprocessing import MinMaxScaler

# Funci贸n para cargar y filtrar datos
def load_and_filter_data(file, year):
    data = pd.read_csv(file)
    data['FECHA'] = pd.to_datetime(data['FECHA'])
    return data[data['FECHA'].dt.year >= year]

# Funci贸n para crear ventanas deslizantes
def sliding_windows(data, seq_length):
    x, y = [], []
    for i in range(len(data) - seq_length):
        x.append(data[i:i + seq_length])
        y.append(data[i + seq_length])
    return np.array(x), np.array(y)

# Clase LSTM
class LSTM(nn.Module):
    def __init__(self, input_size, hidden_size, num_layers, output_size):
        super(LSTM, self).__init__()
        self.lstm = nn.LSTM(input_size, hidden_size, num_layers, batch_first=True)
        self.fc = nn.Linear(hidden_size, output_size)

    def forward(self, x):
        h0 = torch.zeros(self.num_layers, x.size(0), self.hidden_size)
        c0 = torch.zeros(self.num_layers, x.size(0), self.hidden_size)
        out, _ = self.lstm(x, (h0, c0))
        return self.fc(out[:, -1, :])

# Clase GRU
class GRU(nn.Module):
    def __init__(self, input_size, hidden_size, num_layers, output_size):
        super(GRU, self).__init__()
        self.gru = nn.GRU(input_size, hidden_size, num_layers, batch_first=True)
        self.fc = nn.Linear(hidden_size, output_size)

    def forward(self, x):
        h0 = torch.zeros(self.num_layers, x.size(0), self.hidden_size)
        out, _ = self.gru(x, h0)
        return self.fc(out[:, -1, :])

# Funci贸n para entrenar el modelo
def train_model(model, criterion, optimizer, trainX, trainY, num_epochs):
    for epoch in range(num_epochs):
        model.train()
        outputs = model(trainX)
        optimizer.zero_grad()
        loss = criterion(outputs, trainY)
        loss.backward()
        optimizer.step()
        if (epoch+1) % 100 == 0:
            st.write(f'Epoch [{epoch+1}/{num_epochs}], Loss: {loss.item():.4f}')

# Funci贸n para predecir y graficar resultados
def predict_and_plot(model, trainX, trainY, testX, testY, scaler, filtered_data1, filtered_data2, seq_length):
    model.eval()
    train_predict = model(trainX)
    test_predict = model(testX)

    train_predict = scaler.inverse_transform(train_predict.detach().numpy().reshape(-1, 1))
    trainY_plot = scaler.inverse_transform(trainY.numpy().reshape(-1, 1))
    test_predict = scaler.inverse_transform(test_predict.detach().numpy().reshape(-1, 1))
    testY_plot = scaler.inverse_transform(testY.numpy().reshape(-1, 1))

    train_data = pd.DataFrame({
        'Fecha': filtered_data1['FECHA'].values[seq_length:seq_length+len(trainY)],
        'Datos de entrenamiento': trainY_plot.ravel(),
        'Predicciones de entrenamiento': train_predict.ravel()
    })

    test_data = pd.DataFrame({
        'Fecha': filtered_data2['FECHA'].values[seq_length:seq_length+len(testY)],
        'Datos de prueba': testY_plot.ravel(),
        'Predicciones de prueba': test_predict.ravel()
    })

    combined_data = pd.concat([train_data, test_data])
    combined_data.set_index('Fecha', inplace=True)
    st.line_chart(combined_data)

def main():
    st.title('Predicci贸n de Series de Tiempo')
    st.sidebar.title('Par谩metros del Modelo')

    file1 = 'PARCIAL-AGUA-_2_.csv'
    file2 = 'PARCIAL-AGUA-_3_.csv'
    year_filter = 2007
    seq_length = 4

    data1 = load_and_filter_data(file1, year_filter)
    data2 = load_and_filter_data(file2, year_filter)

    combined_values = np.concatenate([data1['VALOR-LS-CF-N'].values, data2['VALOR-LS-CF-N'].values]).reshape(-1, 1)
    scaler = MinMaxScaler()
    scaled_values = scaler.fit_transform(combined_values)

    scaled_values1 = scaled_values[:len(data1)]
    scaled_values2 = scaled_values[len(data1):]

    x_train, y_train = sliding_windows(scaled_values1, seq_length)
    x_test, y_test = sliding_windows(scaled_values2, seq_length)

    trainX = torch.Tensor(x_train)
    trainY = torch.Tensor(y_train)
    testX = torch.Tensor(x_test)
    testY = torch.Tensor(y_test)

    model_type = st.sidebar.selectbox('Selecciona el modelo', ('LSTM', 'GRU'))
    num_epochs = st.sidebar.slider('N煤mero de 茅pocas', 100, 200)
    learning_rate = st.sidebar.number_input('Tasa de aprendizaje', 0.001, 0.1, 0.01, 0.001)

    input_size = 1
    hidden_size = 50
    num_layers = 2
    output_size = 1

    if model_type == 'LSTM':
        model = LSTM(input_size, hidden_size, num_layers, output_size)
    else:
        model = GRU(input_size, hidden_size, num_layers, output_size)

    criterion = nn.MSELoss()
    optimizer = torch.optim.Adam(model.parameters(), lr=learning_rate)

    if st.sidebar.button('Entrenar y Predecir'):
        train_model(model, criterion, optimizer, trainX, trainY, num_epochs)
        predict_and_plot(model, trainX, trainY, testX, testY, scaler, data1, data2, seq_length)

if __name__ == "__main__":
    main()