File size: 10,621 Bytes
4aa9c9f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
import logging
import math
import time
from pathlib import Path
from typing import Tuple

import cv2
import numpy as np
import pandas as pd
import torch
import torchaudio
import torchaudio.transforms as T
import yaml
from PIL import Image
from tqdm import tqdm
from ultralytics import YOLO


def yaml_read(path: Path) -> dict:
    """Returns yaml content as a python dict."""
    with open(path, "r") as f:
        return yaml.safe_load(f)


def clip(
    waveform: torch.Tensor,
    offset: float,
    duration: float,
    sample_rate: int,
) -> torch.Tensor:
    """
    Returns a clipped waveform of `duration` seconds at `offset` in seconds.
    """
    offset_frames_start = int(offset * sample_rate)
    offset_frames_end = offset_frames_start + int(duration * sample_rate)
    return waveform[:, offset_frames_start:offset_frames_end]


def chunk(
    waveform: torch.Tensor,
    sample_rate: int,
    duration: float,
    overlap: float,
) -> list[torch.Tensor]:
    """
    Returns a list of waveforms as torch.Tensor. Each of these waveforms have the specified
    duration and the specified overlap in seconds.
    """
    total_seconds = waveform.shape[1] / sample_rate
    number_spectrograms = total_seconds / (duration - overlap)
    offsets = [
        idx * (duration - overlap) for idx in range(0, math.floor(number_spectrograms))
    ]
    return [
        clip(
            waveform=waveform,
            offset=offset,
            duration=duration,
            sample_rate=sample_rate,
        )
        for offset in offsets
    ]


def load_audio(audio_filepath: Path) -> Tuple[torch.Tensor, int]:
    """
    Loads an audio_filepath and returns the waveform and sample_rate of the file.
    """
    start_time = time.time()
    waveform, sample_rate = torchaudio.load(audio_filepath)
    end_time = time.time()
    elapsed_time = end_time - start_time
    logging.info(
        f"Elapsed time to load audio file {audio_filepath.name}: {elapsed_time:.2f}s"
    )
    return waveform, sample_rate


def waveform_to_spectrogram(
    waveform: torch.Tensor,
    sample_rate: int,
    n_fft: int,
    hop_length: int,
    freq_max: float,
) -> torch.Tensor:
    """
    Returns a spectrogram as a torch.Tensor given the provided arguments.
    See torchaudio.transforms.Spectrogram for more details about the parameters.

    Args:
      waveform (torch.Tensor): audio waveform of dimension of `(..., time)`
      sample_rate (int): sampling rate of the waveform, e.g. 44100 (Hz)
      n_fft (int): Size of FFT
      hop_length (int): Length of hop between STFT windows.
      freq_max (float): cutoff frequency (Hz)
    """
    filtered_waveform = torchaudio.functional.lowpass_biquad(
        waveform=waveform, sample_rate=sample_rate, cutoff_freq=freq_max
    )
    transform = T.Spectrogram(n_fft=n_fft, hop_length=hop_length, power=2)
    spectrogram = transform(filtered_waveform)
    spectrogram_db = torchaudio.transforms.AmplitudeToDB()(spectrogram)
    frequencies = torch.linspace(0, sample_rate // 2, spectrogram_db.size(1))
    max_freq_bin = torch.searchsorted(frequencies, freq_max).item()
    filtered_spectrogram_db = spectrogram_db[:, :max_freq_bin, :]
    return filtered_spectrogram_db


def normalize(x: np.ndarray, max_value: int = 255) -> np.ndarray:
    """
    Returns the normalized array, value in [0 - max_value]
    Useful for image conversion.
    """
    _min, _max = x.min(), x.max()
    x_normalized = max_value * (x - _min) / (_max - _min)
    return x_normalized.astype(np.uint8)


def spectrogram_tensor_to_np_image(
    spectrogram: torch.Tensor, width: int, height: int
) -> np.ndarray:
    """
    Returns a numpy array of shape (height, width) that represents the spectrogram tensor as an image.
    """
    spectrogram_db_np = spectrogram[0].numpy()
    # Normalize to [0, 255] for image conversion
    spectrogram_db_normalized = normalize(spectrogram_db_np, max_value=255)
    resized_spectrogram_array = cv2.resize(
        spectrogram_db_normalized, (width, height), interpolation=cv2.INTER_LINEAR
    )
    # Horizontal flip to make it show the low frequency range at the bottom left of the image instead of the top left
    flipped_resized_spectrogram_array = np.flipud(resized_spectrogram_array)
    return flipped_resized_spectrogram_array


def waveform_to_np_image(
    waveform: torch.Tensor,
    sample_rate: int,
    n_fft: int,
    hop_length: int,
    freq_max: float,
    width: int,
    height: int,
) -> np.ndarray:
    """
    Returns a numpy image of shape (height, width) that represents the waveform tensor as an image of its spectrogram.

    Args:
      waveform (torch.Tensor): audio waveform of dimension of `(..., time)`
      sample_rate (int): sampling rate of the waveform, e.g. 44100 (Hz)
      duration (float): time in seconds of the waveform
      n_fft (int): Size of FFT
      hop_length (int): Length of hop between STFT windows.
      freq_max (float): cutoff frequency (Hz)
      width (int): width of the generated image
      height (int): height of the generated image
    """
    spectrogram = waveform_to_spectrogram(
        waveform=waveform,
        sample_rate=sample_rate,
        n_fft=n_fft,
        hop_length=hop_length,
        freq_max=freq_max,
    )
    return spectrogram_tensor_to_np_image(
        spectrogram=spectrogram,
        width=width,
        height=height,
    )


def batch_sequence(xs: list, batch_size: int):
    """
    Yields successive n-sized batches from xs.
    """
    for i in range(0, len(xs), batch_size):
        yield xs[i : i + batch_size]


def inference(
    model: YOLO,
    audio_filepath: Path,
    duration: float,
    overlap: float,
    width: int,
    height: int,
    freq_max: float,
    n_fft: int,
    hop_length: int,
    batch_size: int,
    output_dir: Path,
    save_spectrograms: bool,
    save_predictions: bool,
    verbose: bool,
) -> list:
    """
    Inference entry point for running on an entire audio_filepath sound file.
    """
    logging.info(f"Loading audio filepath {audio_filepath}")
    # waveform, sample_rate = torchaudio.load(audio_filepath)
    waveform, sample_rate = load_audio(audio_filepath)
    waveforms = chunk(
        waveform=waveform,
        sample_rate=sample_rate,
        duration=duration,
        overlap=overlap,
    )
    logging.info(f"Chunking the waveform into {len(waveforms)} overlapping clips")
    logging.info(f"Generating {len(waveforms)} spectrograms")
    images = [
        Image.fromarray(
            waveform_to_np_image(
                waveform=y,
                sample_rate=sample_rate,
                n_fft=n_fft,
                hop_length=hop_length,
                freq_max=freq_max,
                width=width,
                height=height,
            )
        )
        for y in tqdm(waveforms)
    ]
    if save_spectrograms:
        save_dir = output_dir / "spectrograms"
        logging.info(f"Saving spectrograms in {save_dir}")
        save_dir.mkdir(exist_ok=True, parents=True)
        for i, image in tqdm(enumerate(images), total=len(images)):
            image.save(save_dir / f"spectrogram_{i}.png")

    results = []

    batches = list(batch_sequence(images, batch_size=batch_size))
    logging.info(f"Running inference on the spectrograms, {len(batches)} batches")
    for batch in tqdm(batches):
        results.extend(model.predict(batch, verbose=verbose))

    if save_predictions:
        save_dir = output_dir / "predictions"
        save_dir.mkdir(parents=True, exist_ok=True)
        logging.info(f"Saving predictions in {save_dir}")
        for i, yolov8_prediction in tqdm(enumerate(results), total=len(results)):
            yolov8_prediction.save(str(save_dir / f"prediction_{i}.png"))

    return results


def index_to_relative_offset(idx: int, duration: float, overlap: float) -> float:
    """
    Returns the relative offset in seconds based on the provided spectrogram index, the duration and the overlap.
    """
    return idx * (duration - overlap)


def from_yolov8_prediction(
    yolov8_prediction,
    idx: int,
    duration: float,
    overlap: float,
    freq_min: float,
    freq_max: float,
) -> list[dict]:
    results = []
    for k, box_xyxyn in enumerate(yolov8_prediction.boxes.xyxyn):
        conf = yolov8_prediction.boxes.conf[k].item()
        x1, y1, x2, y2 = box_xyxyn.numpy()
        xmin = min(x1, x2)
        xmax = max(x1, x2)
        ymin = min(y1, y2)
        ymax = max(y1, y2)
        freq_start = ymin * (freq_max - freq_min)
        freq_end = ymax * (freq_max - freq_min)
        t_start = xmin * duration + index_to_relative_offset(
            idx=idx, duration=duration, overlap=overlap
        )
        t_end = xmax * duration + index_to_relative_offset(
            idx=idx, duration=duration, overlap=overlap
        )
        data = {
            "probability": conf,
            "freq_start": freq_start,
            "freq_end": freq_end,
            "t_start": t_start,
            "t_end": t_end,
        }
        results.append(data)
    return results


def to_dataframe(
    yolov8_predictions,
    duration: float,
    overlap: float,
    freq_min: float,
    freq_max: float,
) -> pd.DataFrame:
    """
    Turns the yolov8 predictions into a pandas dataframe, taking into account the relative offset of each prediction.
    The dataframes contains the following columns
      probability (float): float in 0-1 that represents the probability that this is an actual rumble
      freq_start (float): Hz - where the box starts on the frequency axis
      freq_end (float): Hz - where the box ends on the frequency axis
      t_start (float): Hz - where the box starts on the time axis
      t_end (float): Hz - where the box ends on the time axis
    """
    results = []
    for idx, yolov8_prediction in enumerate(yolov8_predictions):
        results.extend(
            from_yolov8_prediction(
                yolov8_prediction,
                idx=idx,
                duration=duration,
                overlap=overlap,
                freq_min=freq_min,
                freq_max=freq_max,
            )
        )
    return pd.DataFrame(results)


def bgr_to_rgb(a: np.ndarray) -> np.ndarray:
    """
    Turn a BGR numpy array into a RGB numpy array when the array `a` represents
    an image.
    """
    return a[:, :, ::-1]

def get_concat_v(im1: Image.Image, im2: Image.Image) -> Image.Image:
    """
    Concatenate vertically two PIL images.
    """
    dst = Image.new('RGB', (im1.width, im1.height + im2.height))
    dst.paste(im1, (0, 0))
    dst.paste(im2, (0, im1.height))
    return dst